Skip to content

CLN: Consistent pandas.util.testing imports in pandas/tests/series #29273

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
184 changes: 89 additions & 95 deletions pandas/tests/series/test_analytics.py

Large diffs are not rendered by default.

19 changes: 9 additions & 10 deletions pandas/tests/series/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
from pandas.core.arrays import PeriodArray
from pandas.core.indexes.datetimes import Timestamp
import pandas.util.testing as tm
from pandas.util.testing import assert_series_equal, ensure_clean

import pandas.io.formats.printing as printing

Expand Down Expand Up @@ -110,15 +109,15 @@ def test_getitem_preserve_name(self, datetime_series):

def test_pickle_datetimes(self, datetime_series):
unp_ts = self._pickle_roundtrip(datetime_series)
assert_series_equal(unp_ts, datetime_series)
tm.assert_series_equal(unp_ts, datetime_series)

def test_pickle_strings(self, string_series):
unp_series = self._pickle_roundtrip(string_series)
assert_series_equal(unp_series, string_series)
tm.assert_series_equal(unp_series, string_series)

def _pickle_roundtrip(self, obj):

with ensure_clean() as path:
with tm.ensure_clean() as path:
obj.to_pickle(path)
unpickled = pd.read_pickle(path)
return unpickled
Expand Down Expand Up @@ -399,16 +398,16 @@ def test_copy_tzaware(self):
# default deep is True
if deep is None or deep is True:
# Did not modify original Series
assert_series_equal(s2, expected2)
assert_series_equal(s, expected)
tm.assert_series_equal(s2, expected2)
tm.assert_series_equal(s, expected)
else:
# we DID modify the original Series
assert_series_equal(s2, expected2)
assert_series_equal(s, expected2)
tm.assert_series_equal(s2, expected2)
tm.assert_series_equal(s, expected2)

def test_axis_alias(self):
s = Series([1, 2, np.nan])
assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
assert s.dropna().sum("rows") == 3
assert s._get_axis_number("rows") == 0
assert s._get_axis_name("rows") == "index"
Expand Down Expand Up @@ -490,7 +489,7 @@ def test_str_attribute(self):
s = Series([" jack", "jill ", " jesse ", "frank"])
for method in methods:
expected = Series([getattr(str, method)(x) for x in s.values])
assert_series_equal(getattr(Series.str, method)(s.str), expected)
tm.assert_series_equal(getattr(Series.str, method)(s.str), expected)

# str accessor only valid with string values
s = Series(range(5))
Expand Down
43 changes: 21 additions & 22 deletions pandas/tests/series/test_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@
from pandas import DataFrame, Index, Series, isna
from pandas.conftest import _get_cython_table_params
import pandas.util.testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal


class TestSeriesApply:
Expand Down Expand Up @@ -47,12 +46,12 @@ def test_apply_same_length_inference_bug(self):

result = s.apply(f)
expected = s.map(f)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

s = Series([1, 2, 3])
result = s.apply(f)
expected = s.map(f)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

def test_apply_dont_convert_dtype(self):
s = Series(np.random.randn(10))
Expand Down Expand Up @@ -184,42 +183,42 @@ def test_transform(self, string_series):
# ufunc
result = string_series.transform(np.sqrt)
expected = f_sqrt.copy()
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

result = string_series.apply(np.sqrt)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

# list-like
result = string_series.transform([np.sqrt])
expected = f_sqrt.to_frame().copy()
expected.columns = ["sqrt"]
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

result = string_series.transform([np.sqrt])
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

result = string_series.transform(["sqrt"])
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

# multiple items in list
# these are in the order as if we are applying both functions per
# series and then concatting
expected = pd.concat([f_sqrt, f_abs], axis=1)
expected.columns = ["sqrt", "absolute"]
result = string_series.apply([np.sqrt, np.abs])
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

result = string_series.transform(["sqrt", "abs"])
expected.columns = ["sqrt", "abs"]
assert_frame_equal(result, expected)
tm.assert_frame_equal(result, expected)

# dict, provide renaming
expected = pd.concat([f_sqrt, f_abs], axis=1)
expected.columns = ["foo", "bar"]
expected = expected.unstack().rename("series")

result = string_series.apply({"foo": np.sqrt, "bar": np.abs})
assert_series_equal(result.reindex_like(expected), expected)
tm.assert_series_equal(result.reindex_like(expected), expected)

def test_transform_and_agg_error(self, string_series):
# we are trying to transform with an aggregator
Expand Down Expand Up @@ -317,7 +316,7 @@ def test_replicate_describe(self, string_series):
]
)
)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

def test_reduce(self, string_series):
# reductions with named functions
Expand All @@ -327,7 +326,7 @@ def test_reduce(self, string_series):
["sum", "mean"],
name=string_series.name,
)
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

def test_non_callable_aggregates(self):
# test agg using non-callable series attributes
Expand All @@ -341,7 +340,7 @@ def test_non_callable_aggregates(self):
# test when mixed w/ callable reducers
result = s.agg(["size", "count", "mean"])
expected = Series(OrderedDict([("size", 3.0), ("count", 2.0), ("mean", 1.5)]))
assert_series_equal(result[expected.index], expected)
tm.assert_series_equal(result[expected.index], expected)

@pytest.mark.parametrize(
"series, func, expected",
Expand Down Expand Up @@ -516,7 +515,7 @@ def test_map_compat(self):
s = Series([True, True, False], index=[1, 2, 3])
result = s.map({True: "foo", False: "bar"})
expected = Series(["foo", "foo", "bar"], index=[1, 2, 3])
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

def test_map_int(self):
left = Series({"a": 1.0, "b": 2.0, "c": 3.0, "d": 4})
Expand Down Expand Up @@ -547,7 +546,7 @@ def test_map_na_exclusion(self):

result = s.map(lambda x: x * 2, na_action="ignore")
exp = s * 2
assert_series_equal(result, exp)
tm.assert_series_equal(result, exp)

def test_map_dict_with_tuple_keys(self):
"""
Expand All @@ -572,15 +571,15 @@ def test_map_counter(self):
counter["c"] += 1
result = s.map(counter)
expected = Series([0, 5, 1], index=[1, 2, 3])
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

def test_map_defaultdict(self):
s = Series([1, 2, 3], index=["a", "b", "c"])
default_dict = defaultdict(lambda: "blank")
default_dict[1] = "stuff"
result = s.map(default_dict)
expected = Series(["stuff", "blank", "blank"], index=["a", "b", "c"])
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

def test_map_dict_subclass_with_missing(self):
"""
Expand All @@ -596,7 +595,7 @@ def __missing__(self, key):
dictionary = DictWithMissing({3: "three"})
result = s.map(dictionary)
expected = Series(["missing", "missing", "three"])
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

def test_map_dict_subclass_without_missing(self):
class DictWithoutMissing(dict):
Expand All @@ -606,7 +605,7 @@ class DictWithoutMissing(dict):
dictionary = DictWithoutMissing({3: "three"})
result = s.map(dictionary)
expected = Series([np.nan, np.nan, "three"])
assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)

def test_map_box(self):
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
Expand Down Expand Up @@ -729,11 +728,11 @@ def test_apply_series_on_date_time_index_aware_series(self, dti, exp):
# Calling apply on a localized time series should not cause an error
index = dti.tz_localize("UTC").index
result = pd.Series(index).apply(lambda x: pd.Series([1, 2]))
assert_frame_equal(result, exp)
tm.assert_frame_equal(result, exp)

def test_apply_scaler_on_date_time_index_aware_series(self):
# GH 25959
# Calling apply on a localized time series should not cause an error
series = tm.makeTimeSeries(nper=30).tz_localize("UTC")
result = pd.Series(series.index).apply(lambda x: 1)
assert_series_equal(result, pd.Series(np.ones(30), dtype="int64"))
tm.assert_series_equal(result, pd.Series(np.ones(30), dtype="int64"))
17 changes: 8 additions & 9 deletions pandas/tests/series/test_combine_concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
import pandas as pd
from pandas import DataFrame, DatetimeIndex, Series, date_range
import pandas.util.testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal


class TestSeriesCombine:
Expand All @@ -28,7 +27,7 @@ def test_append_many(self, datetime_series):
pieces = [datetime_series[:5], datetime_series[5:10], datetime_series[10:]]

result = pieces[0].append(pieces[1:])
assert_series_equal(result, datetime_series)
tm.assert_series_equal(result, datetime_series)

def test_append_duplicates(self):
# GH 13677
Expand Down Expand Up @@ -110,15 +109,15 @@ def test_combine_first(self):
s = Series([1.0, 2, 3], index=[0, 1, 2])
result = s.combine_first(Series([], index=[]))
s.index = s.index.astype("O")
assert_series_equal(s, result)
tm.assert_series_equal(s, result)

def test_update(self):
s = Series([1.5, np.nan, 3.0, 4.0, np.nan])
s2 = Series([np.nan, 3.5, np.nan, 5.0])
s.update(s2)

expected = Series([1.5, 3.5, 3.0, 5.0, np.nan])
assert_series_equal(s, expected)
tm.assert_series_equal(s, expected)

# GH 3217
df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
Expand All @@ -128,7 +127,7 @@ def test_update(self):
expected = DataFrame(
[[1, np.nan, "foo"], [3, 2.0, np.nan]], columns=["a", "b", "c"]
)
assert_frame_equal(df, expected)
tm.assert_frame_equal(df, expected)

@pytest.mark.parametrize(
"other, dtype, expected",
Expand Down Expand Up @@ -161,7 +160,7 @@ def test_update_dtypes(self, other, dtype, expected):
other = Series(other, index=[1, 3])
s.update(other)

assert_series_equal(s, expected)
tm.assert_series_equal(s, expected)

def test_concat_empty_series_dtypes_roundtrips(self):

Expand Down Expand Up @@ -226,7 +225,7 @@ def test_combine_first_dt_tz_values(self, tz_naive_fixture):
tz=tz_naive_fixture,
)
exp = pd.Series(exp_vals, name="ser1")
assert_series_equal(exp, result)
tm.assert_series_equal(exp, result)

def test_concat_empty_series_dtypes(self):

Expand Down Expand Up @@ -324,13 +323,13 @@ def test_combine_first_dt64(self):
s1 = to_datetime(Series([np.NaN, "2011"]))
rs = s0.combine_first(s1)
xp = to_datetime(Series(["2010", "2011"]))
assert_series_equal(rs, xp)
tm.assert_series_equal(rs, xp)

s0 = to_datetime(Series(["2010", np.NaN]))
s1 = Series([np.NaN, "2011"])
rs = s0.combine_first(s1)
xp = Series([datetime(2010, 1, 1), "2011"])
assert_series_equal(rs, xp)
tm.assert_series_equal(rs, xp)


class TestTimeseries:
Expand Down
Loading