Skip to content

BUG: pd.crosstab not working when margin and normalize are set together #27661

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.25.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ Groupby/resample/rolling
Reshaping
^^^^^^^^^

-
- Bug in :meth:`DataFrame.crosstab` when margins set to True and normalize is not False, an error is raised. (:issue:`27500`)
-
-

Expand Down
29 changes: 20 additions & 9 deletions pandas/core/reshape/pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -611,13 +611,17 @@ def _normalize(table, normalize, margins, margins_name="All"):
table = table.fillna(0)

elif margins is True:

# keep index and column of pivoted table
table_index = table.index
table_columns = table.columns
# drop margins created in pivot_table and only keep the core
column_margin = table.loc[:, margins_name].drop(margins_name)
index_margin = table.loc[margins_name, :].drop(margins_name)
# separate cases between multiindex and index
if isinstance(table_index, MultiIndex):
index_margin = table.loc[margins_name, :].drop(margins_name, axis=1)
else:
index_margin = table.loc[margins_name, :].drop(margins_name)
table = table.drop(margins_name, axis=1).drop(margins_name)
# to keep index and columns names
table_index_names = table.index.names
table_columns_names = table.columns.names

# Normalize core
table = _normalize(table, normalize=normalize, margins=False)
Expand All @@ -627,11 +631,19 @@ def _normalize(table, normalize, margins, margins_name="All"):
column_margin = column_margin / column_margin.sum()
table = concat([table, column_margin], axis=1)
table = table.fillna(0)
table.columns = table_columns

elif normalize == "index":
index_margin = index_margin / index_margin.sum()
# index_margin is a dataframe, and use a hacky way: sum(axis=1)[0]
# to get the normalized result, and use sum() instead for series
if isinstance(index_margin, ABCDataFrame):
sum_index_margin = index_margin.sum(axis=1)[0]
else:
sum_index_margin = index_margin.sum()
index_margin = index_margin / sum_index_margin
table = table.append(index_margin)
table = table.fillna(0)
table.index = table_index

elif normalize == "all" or normalize is True:
column_margin = column_margin / column_margin.sum()
Expand All @@ -641,13 +653,12 @@ def _normalize(table, normalize, margins, margins_name="All"):
table = table.append(index_margin)

table = table.fillna(0)
table.index = table_index
table.columns = table_columns

else:
raise ValueError("Not a valid normalize argument")

table.index.names = table_index_names
table.columns.names = table_columns_names

else:
raise ValueError("Not a valid margins argument")

Expand Down
35 changes: 35 additions & 0 deletions pandas/tests/reshape/test_pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -2447,3 +2447,38 @@ def test_crosstab_unsorted_order(self):
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], index=e_idx, columns=e_columns
)
tm.assert_frame_equal(result, expected)

def test_margin_normalize(self):
df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
"bar", "bar", "bar", "bar"],
"B": ["one", "one", "one", "two", "two",
"one", "one", "two", "two"],
"C": ["small", "large", "large", "small",
"small", "large", "small", "small",
"large"],
"D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
"E": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
# normalize on index
result = pd.crosstab([df.A, df.B], df.C, margins=True, margins_name='Sub-Total',
normalize=0)
expected = pd.DataFrame([[0.5, 0.5], [0.5, 0.5],
[0.666667, 0.333333], [0, 1],
[0.444444, 0.555556]])
expected.index = MultiIndex(levels=[['Sub-Total', 'bar', 'foo'],
['', 'one', 'two']],
codes=[[1, 1, 2, 2, 0], [1, 2, 1, 2, 0]],
names=['A', 'B'])
expected.columns = Index(['large', 'small'], dtype='object', name='C')
tm.assert_frame_equal(result, expected)

# normalize on columns
result = pd.crosstab([df.A, df.B], df.C, margins=True, margins_name='Sub-Total',
normalize=1)
expected = pd.DataFrame([[0.25, 0.2, 0.222222], [0.25, 0.2, 0.222222],
[0.5, 0.2, 0.333333], [0, 0.4, 0.222222]])
expected.columns = Index(['large', 'small', 'Sub-Total'], dtype='object',
name='C')
expected.index = MultiIndex(levels=[['bar', 'foo'], ['one', 'two']],
codes=[[1, 1, 2, 2], [1, 2, 1, 2]],
names=['A, B'])
tm.assert_frame_equal(result, expected)