Skip to content

BUG: fix inserting tz-aware datetime to Series, closes #12862 #27322

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Jul 11, 2019
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.25.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1053,6 +1053,7 @@ Indexing
- Bug in :meth:`DataFrame.loc` and :meth:`DataFrame.iloc` on a :class:`DataFrame` with a single timezone-aware datetime64[ns] column incorrectly returning a scalar instead of a :class:`Series` (:issue:`27110`)
- Bug in :class:`CategoricalIndex` and :class:`Categorical` incorrectly raising ``ValueError`` instead of ``TypeError`` when a list is passed using the ``in`` operator (``__contains__``) (:issue:`21729`)
- Bug in setting a new value in a :class:`Series` with a :class:`Timedelta` object incorrectly casting the value to an integer (:issue:`22717`)
- Bug in :class:`Series` setting a new key (``__setitem__``) with a timezone-aware datetime incorrectly raising ``ValueError`` (:issue:`12862`)
-

Missing
Expand Down
7 changes: 7 additions & 0 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -1268,6 +1268,13 @@ def _set_with(self, key, value):
except Exception:
pass

if is_scalar(key) and not is_integer(key) and key not in self.index:
# GH#12862 adding an new key to the Series
# Note: have to exclude integers because that is ambiguously
# position-based
self.loc[key] = value
return

if is_scalar(key):
key = [key]
elif not isinstance(key, (list, Series, np.ndarray)):
Expand Down
22 changes: 21 additions & 1 deletion pandas/tests/indexing/test_loc.py
Original file line number Diff line number Diff line change
Expand Up @@ -802,7 +802,7 @@ def test_loc_setitem_with_scalar_index(self, indexer, value):

assert is_scalar(result) and result == "Z"

def test_loc_coerceion(self):
def test_loc_coercion(self):

# 12411
df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC"), pd.NaT]})
Expand Down Expand Up @@ -838,6 +838,26 @@ def test_loc_coerceion(self):
result = df.iloc[3:]
tm.assert_series_equal(result.dtypes, expected)

def test_setitem_new_key_tz(self):
# GH#12862 should not raise on assigning the second value
vals = [
pd.to_datetime(42).tz_localize("UTC"),
pd.to_datetime(666).tz_localize("UTC"),
]
expected = pd.Series(vals, index=["foo", "bar"])

ser = pd.Series()
ser["foo"] = vals[0]
ser["bar"] = vals[1]

tm.assert_series_equal(ser, expected)

ser = pd.Series()
ser.loc["foo"] = vals[0]
ser.loc["bar"] = vals[1]

tm.assert_series_equal(ser, expected)

def test_loc_non_unique(self):
# GH3659
# non-unique indexer with loc slice
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/series/indexing/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -523,7 +523,7 @@ def test_setitem_with_tz_dst():
tm.assert_series_equal(s, exp)


def test_categorial_assigning_ops():
def test_categorical_assigning_ops():
orig = Series(Categorical(["b", "b"], categories=["a", "b"]))
s = orig.copy()
s[:] = "a"
Expand Down