Skip to content

CLN: Split test_window.py #27305

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jul 10, 2019
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added pandas/tests/window/__init__.py
Empty file.
228 changes: 228 additions & 0 deletions pandas/tests/window/test_dtypes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
from itertools import product

import numpy as np
import pytest

from pandas import DataFrame, Series
from pandas.core.base import DataError
import pandas.util.testing as tm

# gh-12373 : rolling functions error on float32 data
# make sure rolling functions works for different dtypes
#
# NOTE that these are yielded tests and so _create_data
# is explicitly called.
#
# further note that we are only checking rolling for fully dtype
# compliance (though both expanding and ewm inherit)


class Dtype:
window = 2

funcs = {
"count": lambda v: v.count(),
"max": lambda v: v.max(),
"min": lambda v: v.min(),
"sum": lambda v: v.sum(),
"mean": lambda v: v.mean(),
"std": lambda v: v.std(),
"var": lambda v: v.var(),
"median": lambda v: v.median(),
}

def get_expects(self):
expects = {
"sr1": {
"count": Series([1, 2, 2, 2, 2], dtype="float64"),
"max": Series([np.nan, 1, 2, 3, 4], dtype="float64"),
"min": Series([np.nan, 0, 1, 2, 3], dtype="float64"),
"sum": Series([np.nan, 1, 3, 5, 7], dtype="float64"),
"mean": Series([np.nan, 0.5, 1.5, 2.5, 3.5], dtype="float64"),
"std": Series([np.nan] + [np.sqrt(0.5)] * 4, dtype="float64"),
"var": Series([np.nan, 0.5, 0.5, 0.5, 0.5], dtype="float64"),
"median": Series([np.nan, 0.5, 1.5, 2.5, 3.5], dtype="float64"),
},
"sr2": {
"count": Series([1, 2, 2, 2, 2], dtype="float64"),
"max": Series([np.nan, 10, 8, 6, 4], dtype="float64"),
"min": Series([np.nan, 8, 6, 4, 2], dtype="float64"),
"sum": Series([np.nan, 18, 14, 10, 6], dtype="float64"),
"mean": Series([np.nan, 9, 7, 5, 3], dtype="float64"),
"std": Series([np.nan] + [np.sqrt(2)] * 4, dtype="float64"),
"var": Series([np.nan, 2, 2, 2, 2], dtype="float64"),
"median": Series([np.nan, 9, 7, 5, 3], dtype="float64"),
},
"df": {
"count": DataFrame(
{0: Series([1, 2, 2, 2, 2]), 1: Series([1, 2, 2, 2, 2])},
dtype="float64",
),
"max": DataFrame(
{0: Series([np.nan, 2, 4, 6, 8]), 1: Series([np.nan, 3, 5, 7, 9])},
dtype="float64",
),
"min": DataFrame(
{0: Series([np.nan, 0, 2, 4, 6]), 1: Series([np.nan, 1, 3, 5, 7])},
dtype="float64",
),
"sum": DataFrame(
{
0: Series([np.nan, 2, 6, 10, 14]),
1: Series([np.nan, 4, 8, 12, 16]),
},
dtype="float64",
),
"mean": DataFrame(
{0: Series([np.nan, 1, 3, 5, 7]), 1: Series([np.nan, 2, 4, 6, 8])},
dtype="float64",
),
"std": DataFrame(
{
0: Series([np.nan] + [np.sqrt(2)] * 4),
1: Series([np.nan] + [np.sqrt(2)] * 4),
},
dtype="float64",
),
"var": DataFrame(
{0: Series([np.nan, 2, 2, 2, 2]), 1: Series([np.nan, 2, 2, 2, 2])},
dtype="float64",
),
"median": DataFrame(
{0: Series([np.nan, 1, 3, 5, 7]), 1: Series([np.nan, 2, 4, 6, 8])},
dtype="float64",
),
},
}
return expects

def _create_dtype_data(self, dtype):
sr1 = Series(np.arange(5), dtype=dtype)
sr2 = Series(np.arange(10, 0, -2), dtype=dtype)
df = DataFrame(np.arange(10).reshape((5, 2)), dtype=dtype)

data = {"sr1": sr1, "sr2": sr2, "df": df}

return data

def _create_data(self):
self.data = self._create_dtype_data(self.dtype)
self.expects = self.get_expects()

def test_dtypes(self):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this the only function being tested in this module? If so I think would make sense to try and parametrize this first before moving

self._create_data()
for f_name, d_name in product(self.funcs.keys(), self.data.keys()):

f = self.funcs[f_name]
d = self.data[d_name]
exp = self.expects[d_name][f_name]
self.check_dtypes(f, f_name, d, d_name, exp)

def check_dtypes(self, f, f_name, d, d_name, exp):
roll = d.rolling(window=self.window)
result = f(roll)
tm.assert_almost_equal(result, exp)


class TestDtype_object(Dtype):
dtype = object


class Dtype_integer(Dtype):
pass


class TestDtype_int8(Dtype_integer):
dtype = np.int8


class TestDtype_int16(Dtype_integer):
dtype = np.int16


class TestDtype_int32(Dtype_integer):
dtype = np.int32


class TestDtype_int64(Dtype_integer):
dtype = np.int64


class Dtype_uinteger(Dtype):
pass


class TestDtype_uint8(Dtype_uinteger):
dtype = np.uint8


class TestDtype_uint16(Dtype_uinteger):
dtype = np.uint16


class TestDtype_uint32(Dtype_uinteger):
dtype = np.uint32


class TestDtype_uint64(Dtype_uinteger):
dtype = np.uint64


class Dtype_float(Dtype):
pass


class TestDtype_float16(Dtype_float):
dtype = np.float16


class TestDtype_float32(Dtype_float):
dtype = np.float32


class TestDtype_float64(Dtype_float):
dtype = np.float64


class TestDtype_category(Dtype):
dtype = "category"
include_df = False

def _create_dtype_data(self, dtype):
sr1 = Series(range(5), dtype=dtype)
sr2 = Series(range(10, 0, -2), dtype=dtype)

data = {"sr1": sr1, "sr2": sr2}

return data


class DatetimeLike(Dtype):
def check_dtypes(self, f, f_name, d, d_name, exp):

roll = d.rolling(window=self.window)
if f_name == "count":
result = f(roll)
tm.assert_almost_equal(result, exp)

else:
with pytest.raises(DataError):
f(roll)


class TestDtype_timedelta(DatetimeLike):
dtype = np.dtype("m8[ns]")


class TestDtype_datetime(DatetimeLike):
dtype = np.dtype("M8[ns]")


class TestDtype_datetime64UTC(DatetimeLike):
dtype = "datetime64[ns, UTC]"

def _create_data(self):
pytest.skip(
"direct creation of extension dtype "
"datetime64[ns, UTC] is not supported ATM"
)
Loading