Skip to content

fix a indices bug for categorical-datetime columns #26860

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 20 commits into from
Closed
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pandas/core/groupby/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,6 +232,7 @@ def indices(self):
label_list = [ping.labels for ping in self.groupings]
keys = [com.values_from_object(ping.group_index)
for ping in self.groupings]
keys = [np.array(key) for key in keys]
return get_indexer_dict(label_list, keys)

@property
Expand Down
78 changes: 78 additions & 0 deletions pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1752,3 +1752,81 @@ def test_groupby_groups_in_BaseGrouper():
result = df.groupby(['beta', pd.Grouper(level='alpha')])
expected = df.groupby(['beta', 'alpha'])
assert(result.groups == expected.groups)


def test_groupby_indices():
# GH 26860
# Test if DataFrame Groupby builds gb.indices correctly.

int_series = pd.Series([1, 2, 3])
int_series_cat = int_series.astype('category')
float_series = pd.Series([1., 2., 3.])
float_series_cat = float_series.astype('category')
dt_series = pd.to_datetime(['2018Q1', '2018Q2', '2018Q3'])
dt_series_cat = dt_series.astype('category')
period_series = dt_series.to_period('Q')
period_series_cat = period_series.astype('category')

df = pd.DataFrame({
'int_series': int_series,
'int_series_cat': int_series_cat,
'float_series': float_series,
'float_series_cat': float_series_cat,
'dt_series': dt_series,
'dt_series_cat': dt_series_cat,
'period_series': period_series,
'period_series_cat': period_series_cat
})
col_order = [
'int_series',
'int_series_cat',
'float_series',
'float_series_cat',
'dt_series',
'dt_series_cat',
'period_series',
'period_series_cat'
]
df = df[col_order]
from itertools import combinations

dts = [
np.datetime64('2018-01-01T00:00:00.000000000'),
np.datetime64('2018-04-01T00:00:00.000000000'),
np.datetime64('2018-07-01T00:00:00.000000000')
]
pers = [pd.Period(dt, freq='Q') for dt in dts]

target_key_choices = [
[1, 1, 1.0, 1.0, dts[0], dts[0], pers[0], pers[0]],
[2, 2, 2.0, 2.0, dts[1], dts[1], pers[1], pers[1]],
[3, 3, 3.0, 3.0, dts[2], dts[2], pers[2], pers[2]]
]
target_indices_values = [
np.array([i])
for i in range(df.shape[0])
]
n_choices = len(df.columns)

for n in range(1, n_choices + 1):
for combo in combinations(list(range(n_choices)), n):
combo = list(combo)
cols = list(df.columns[combo])
if n == 1:
target_indices = {}
for i, key_choice in enumerate(target_key_choices):
key = key_choice[combo[0]]
if pd.api.types.is_datetime64_any_dtype(key):
key = pd.Timestamp(key)
target_indices[key] = target_indices_values[i]
else:
target_indices = {}
for i, key_choice in enumerate(target_key_choices):
key = tuple(key_choice[j] for j in combo)
target_indices[key] = target_indices_values[i]

indices = df.groupby(cols).indices
assert set(target_indices.keys()) == set(indices.keys())
for key in target_indices.keys():
assert pd.core.dtypes.missing.array_equivalent(
target_indices[key], indices[key])