Skip to content

BUG: ignore errors for invalid dates in to_datetime() with errors=coerce (#25512) #26561

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jun 1, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.25.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -359,6 +359,7 @@ Datetimelike
- Bug in :class:`Series` and :class:`DataFrame` repr where ``np.datetime64('NaT')`` and ``np.timedelta64('NaT')`` with ``dtype=object`` would be represented as ``NaN`` (:issue:`25445`)
- Bug in :func:`to_datetime` which does not replace the invalid argument with ``NaT`` when error is set to coerce (:issue:`26122`)
- Bug in adding :class:`DateOffset` with nonzero month to :class:`DatetimeIndex` would raise ``ValueError`` (:issue:`26258`)
- Bug in :func:`to_datetime` which raises unhandled ``OverflowError`` when called with mix of invalid dates and ``NaN`` values with ``format='%Y%m%d'`` and ``error='coerce'`` (:issue:`25512`)

Timedelta
^^^^^^^^^
Expand Down
6 changes: 3 additions & 3 deletions pandas/core/tools/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -775,21 +775,21 @@ def calc_with_mask(carg, mask):
# try intlike / strings that are ints
try:
return calc(arg.astype(np.int64))
except ValueError:
except (ValueError, OverflowError):
pass

# a float with actual np.nan
try:
carg = arg.astype(np.float64)
return calc_with_mask(carg, notna(carg))
except ValueError:
except (ValueError, OverflowError):
pass

# string with NaN-like
try:
mask = ~algorithms.isin(arg, list(tslib.nat_strings))
return calc_with_mask(arg, mask)
except ValueError:
except (ValueError, OverflowError):
pass

return None
Expand Down
19 changes: 19 additions & 0 deletions pandas/tests/indexes/datetimes/test_tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,25 @@ def test_to_datetime_format_YYYYMMDD(self, cache):
result = pd.to_datetime(s, format='%Y%m%d', errors='coerce',
cache=cache)
expected = Series(['20121231', '20141231', 'NaT'], dtype='M8[ns]')
tm.assert_series_equal(result, expected)

@pytest.mark.parametrize("input_s, expected", [
# NaN before strings with invalid date values
[Series(['19801222', np.nan, '20010012', '10019999']),
Series([Timestamp('19801222'), np.nan, np.nan, np.nan])],
# NaN after strings with invalid date values
[Series(['19801222', '20010012', '10019999', np.nan]),
Series([Timestamp('19801222'), np.nan, np.nan, np.nan])],
# NaN before integers with invalid date values
[Series([20190813, np.nan, 20010012, 20019999]),
Series([Timestamp('20190813'), np.nan, np.nan, np.nan])],
# NaN after integers with invalid date values
[Series([20190813, 20010012, np.nan, 20019999]),
Series([Timestamp('20190813'), np.nan, np.nan, np.nan])]])
def test_to_datetime_format_YYYYMMDD_overflow(self, input_s, expected):
# GH 25512
# format='%Y%m%d', errors='coerce'
result = pd.to_datetime(input_s, format='%Y%m%d', errors='coerce')
assert_series_equal(result, expected)

@pytest.mark.parametrize('cache', [True, False])
Expand Down