Skip to content

BUG: Fix groupby sorting on ordered Categoricals (GH25871) #25908

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Apr 5, 2019
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.25.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -347,7 +347,7 @@ Groupby/Resample/Rolling
- Bug in :func:`pandas.core.groupby.GroupBy.agg` when applying a aggregation function to timezone aware data (:issue:`23683`)
- Bug in :func:`pandas.core.groupby.GroupBy.first` and :func:`pandas.core.groupby.GroupBy.last` where timezone information would be dropped (:issue:`21603`)
- Ensured that ordering of outputs in ``groupby`` aggregation functions is consistent across all versions of Python (:issue:`25692`)

- Ensured that result group order is correct when grouping on an ordered Categorical and specifying ``observed=True`` (:issue:`25871`)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you use double back-ticks around Categorical

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done


Reshaping
^^^^^^^^^
Expand Down
2 changes: 2 additions & 0 deletions pandas/core/groupby/grouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -302,6 +302,8 @@ def __init__(self, index, grouper=None, obj=None, name=None, level=None,
if observed:
codes = algorithms.unique1d(self.grouper.codes)
codes = codes[codes != -1]
if sort or self.grouper.ordered:
codes = np.sort(codes)
else:
codes = np.arange(len(categories))

Expand Down
26 changes: 26 additions & 0 deletions pandas/tests/groupby/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -453,6 +453,32 @@ def test_dataframe_categorical_with_nan(observed):
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("ordered", [True, False])
@pytest.mark.parametrize("observed", [True, False])
@pytest.mark.parametrize("sort", [True, False])
def test_dataframe_categorical_ordered_observed_sort(ordered, observed, sort):
# GH 25871: Fix groupby sorting on ordered Categoricals
# Build a dataframe with cat having one unobserved category ('AWOL'),
# and a Series with identical values
cat = pd.Categorical(['d', 'a', 'b', 'a', 'd', 'b'],
categories=['a', 'b', 'AWOL', 'd'],
ordered=ordered)
val = pd.Series(['d', 'a', 'b', 'a', 'd', 'b'])
df = pd.DataFrame({'cat': cat, 'val': val})

# aggregate on the Categorical
result = (df.groupby('cat', observed=observed, sort=sort)['val']
.aggregate('first'))

# If ordering works, we expect index labels equal to aggregation results,
# except for 'observed=False': index contains 'AWOL' and aggregation None
label = pd.Series(result.index.array, dtype='object')
aggr = pd.Series(result.array)
if not observed:
aggr[aggr.isna()] = 'AWOL'
tm.assert_equal(label, aggr)


def test_datetime():
# GH9049: ensure backward compatibility
levels = pd.date_range('2014-01-01', periods=4)
Expand Down
29 changes: 14 additions & 15 deletions pandas/tests/groupby/test_grouping.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,28 +253,27 @@ def test_groupby_levels_and_columns(self):
tm.assert_frame_equal(by_levels, by_columns)

def test_groupby_categorical_index_and_columns(self, observed):
# GH18432
# GH18432, adapted for GH25871
columns = ['A', 'B', 'A', 'B']
categories = ['B', 'A']
data = np.ones((5, 4), int)
data = np.array([[1, 2, 1, 2],
[1, 2, 1, 2],
[1, 2, 1, 2],
[1, 2, 1, 2],
[1, 2, 1, 2]], int)
cat_columns = CategoricalIndex(columns,
categories=categories,
ordered=True)
df = DataFrame(data=data, columns=cat_columns)
result = df.groupby(axis=1, level=0, observed=observed).sum()
expected_data = 2 * np.ones((5, 2), int)

if observed:
# if we are not-observed we undergo a reindex
# so need to adjust the output as our expected sets us up
# to be non-observed
expected_columns = CategoricalIndex(['A', 'B'],
categories=categories,
ordered=True)
else:
expected_columns = CategoricalIndex(categories,
categories=categories,
ordered=True)
expected_data = np.array([[4, 2],
[4, 2],
[4, 2],
[4, 2],
[4, 2]], int)
expected_columns = CategoricalIndex(categories,
categories=categories,
ordered=True)
expected = DataFrame(data=expected_data, columns=expected_columns)
assert_frame_equal(result, expected)

Expand Down