Skip to content

TST: Check merging on equivalent CategoricalDtype #25898

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.25.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -358,6 +358,7 @@ Reshaping
- :func:`to_records` now accepts dtypes to its `column_dtypes` parameter (:issue:`24895`)
- Bug in :func:`concat` where order of ``OrderedDict`` (and ``dict`` in Python 3.6+) is not respected, when passed in as ``objs`` argument (:issue:`21510`)
- Bug in :func:`concat` where the resulting ``freq`` of two :class:`DatetimeIndex` with the same ``freq`` would be dropped (:issue:`3232`).
- Bug in :func:`merge` where merging with equivalent Categorical dtypes was raising an error (:issue:`22501`)

Sparse
^^^^^^
Expand Down
65 changes: 65 additions & 0 deletions pandas/tests/reshape/merge/test_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -1666,3 +1666,68 @@ def test_merge_suffix_none_error(col1, col2, suffixes):
msg = "iterable"
with pytest.raises(TypeError, match=msg):
pd.merge(a, b, left_index=True, right_index=True, suffixes=suffixes)


@pytest.mark.parametrize("cat_dtype", ["one", "two"])
@pytest.mark.parametrize("reverse", [True, False])
def test_merge_equal_cat_dtypes(cat_dtype, reverse):
# see gh-22501
cat_dtypes = {
"one": CategoricalDtype(categories=["a", "b", "c"], ordered=False),
"two": CategoricalDtype(categories=["a", "b", "c"], ordered=False),
}

df1 = DataFrame({
"foo": Series(["a", "b", "c"]).astype(cat_dtypes["one"]),
"left": [1, 2, 3],
}).set_index("foo")

data_foo = ["a", "b", "c"]
data_right = [1, 2, 3]

if reverse:
data_foo.reverse()
data_right.reverse()

df2 = DataFrame({
"foo": Series(data_foo).astype(cat_dtypes[cat_dtype]),
"right": data_right
}).set_index("foo")

result = df1.merge(df2, left_index=True, right_index=True)

expected = DataFrame({
"left": [1, 2, 3],
"right": [1, 2, 3],
"foo": Series(["a", "b", "c"]).astype(cat_dtypes["one"]),
}).set_index("foo")

# Categorical is unordered, so don't check ordering.
tm.assert_frame_equal(result, expected, check_categorical=False)


def test_merge_equal_cat_dtypes2():
# see gh-22501
cat_dtype = CategoricalDtype(categories=["a", "b", "c"], ordered=False)

# Test Data
df1 = DataFrame({
"foo": Series(["a", "b"]).astype(cat_dtype),
"left": [1, 2],
}).set_index("foo")

df2 = DataFrame({
"foo": Series(["a", "b", "c"]).astype(cat_dtype),
"right": [3, 2, 1],
}).set_index("foo")

result = df1.merge(df2, left_index=True, right_index=True)

expected = DataFrame({
"left": [1, 2],
"right": [3, 2],
"foo": Series(["a", "b"]).astype(cat_dtype),
}).set_index("foo")

# Categorical is unordered, so don't check ordering.
tm.assert_frame_equal(result, expected, check_categorical=False)