Skip to content

BUG-19214 int categoricals are formatted as ints #24494

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Jan 5, 2019
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions doc/source/whatsnew/v0.24.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1113,6 +1113,36 @@ cast from integer dtype to floating dtype (:issue:`22019`)
...: 'c': [1, 1, np.nan, 1, 1]})
In [4]: pd.crosstab(df.a, df.b, normalize='columns')

Formatting Categorical Integer Data With ``NaN`` Values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Categorical integer data with ``NaN`` values will be formatted as integers
instead of floats. :meth:`Series.to_numpy` is not affected (:issue:`19214`)

*Previous Behavior*

.. code-block:: ipython

In [3]: pd.Series([1, 2, np.nan], dtype='object').astype('category')
Out[3]:
0 1.0
1 2.0
2 NaN
dtype: category
Categories (2, int64): [1, 2]

In [4]: pd.Categorical([1, 2, np.nan])
Out[4]:
[1.0, 2.0, NaN]
Categories (2, int64): [1, 2]

*New Behavior*

.. ipython:: python

pd.Series([1, 2, np.nan], dtype='object').astype('category')
pd.Categorical([1, 2, np.nan])

Datetimelike API Changes
^^^^^^^^^^^^^^^^^^^^^^^^

Expand Down Expand Up @@ -1653,6 +1683,7 @@ Reshaping
- :meth:`DataFrame.nlargest` and :meth:`DataFrame.nsmallest` now returns the correct n values when keep != 'all' also when tied on the first columns (:issue:`22752`)
- Constructing a DataFrame with an index argument that wasn't already an instance of :class:`~pandas.core.Index` was broken (:issue:`22227`).
- Bug in :class:`DataFrame` prevented list subclasses to be used to construction (:issue:`21226`)
- Calling :func:`pandas.concat` on a ``Categorical`` of ints with NA values now causes them to be processed as objects (formerly coerced to floats) (:issue:`19214`)
Copy link
Contributor

@TomAugspurger TomAugspurger Jan 1, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This only applies when concating a categorical with a different dtype, right? If I concat two integer cats with the same dtype, it’s still categorical right?

- Bug in :func:`DataFrame.unstack` and :func:`DataFrame.pivot_table` returning a missleading error message when the resulting DataFrame has more elements than int32 can handle. Now, the error message is improved, pointing towards the actual problem (:issue:`20601`)

.. _whatsnew_0240.bug_fixes.sparse:
Expand Down
3 changes: 3 additions & 0 deletions pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -1520,6 +1520,9 @@ def get_values(self):
# if we are a datetime and period index, return Index to keep metadata
if is_datetimelike(self.categories):
return self.categories.take(self._codes, fill_value=np.nan)
elif is_integer_dtype(self.categories) and -1 in self._codes:
return self.categories.astype("object").take(self._codes,
fill_value=np.nan)
return np.array(self)

def check_for_ordered(self, op):
Expand Down
9 changes: 9 additions & 0 deletions pandas/tests/arrays/categorical/test_repr.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,6 +240,15 @@ def test_categorical_repr_datetime_ordered(self):

assert repr(c) == exp

def test_categorical_repr_int_with_nan(self):
c = Categorical([1, 2, np.nan])
c_exp = """[1, 2, NaN]\nCategories (2, int64): [1, 2]"""
assert repr(c) == c_exp

s = Series([1, 2, np.nan], dtype="object").astype("category")
s_exp = """0 1\n1 2\n2 NaN\ndtype: category\nCategories (2, int64): [1, 2]""" # noqa
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You can use parenthesis to wrap this line.

assert repr(s) == s_exp

def test_categorical_repr_period(self):
idx = period_range('2011-01-01 09:00', freq='H', periods=5)
c = Categorical(idx)
Expand Down
18 changes: 10 additions & 8 deletions pandas/tests/reshape/test_concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -496,7 +496,7 @@ def test_concat_categorical(self):
s1 = pd.Series([10, 11, np.nan], dtype='category')
s2 = pd.Series([np.nan, 1, 3, 2], dtype='category')

exp = pd.Series([10, 11, np.nan, np.nan, 1, 3, 2])
exp = pd.Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype='object')
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
tm.assert_series_equal(s1.append(s2, ignore_index=True), exp)

Expand All @@ -516,12 +516,12 @@ def test_concat_categorical_coercion(self):
s1 = pd.Series([1, 2, np.nan], dtype='category')
s2 = pd.Series([2, 1, 2])

exp = pd.Series([1, 2, np.nan, 2, 1, 2])
exp = pd.Series([1, 2, np.nan, 2, 1, 2], dtype='object')
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
tm.assert_series_equal(s1.append(s2, ignore_index=True), exp)

# result shouldn't be affected by 1st elem dtype
exp = pd.Series([2, 1, 2, 1, 2, np.nan])
exp = pd.Series([2, 1, 2, 1, 2, np.nan], dtype='object')
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
tm.assert_series_equal(s2.append(s1, ignore_index=True), exp)

Expand All @@ -541,11 +541,11 @@ def test_concat_categorical_coercion(self):
s1 = pd.Series([10, 11, np.nan], dtype='category')
s2 = pd.Series([1, 3, 2])

exp = pd.Series([10, 11, np.nan, 1, 3, 2])
exp = pd.Series([10, 11, np.nan, 1, 3, 2], dtype='object')
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
tm.assert_series_equal(s1.append(s2, ignore_index=True), exp)

exp = pd.Series([1, 3, 2, 10, 11, np.nan])
exp = pd.Series([1, 3, 2, 10, 11, np.nan], dtype='object')
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
tm.assert_series_equal(s2.append(s1, ignore_index=True), exp)

Expand Down Expand Up @@ -581,11 +581,13 @@ def test_concat_categorical_3elem_coercion(self):
s2 = pd.Series([2, 1, 2], dtype='category')
s3 = pd.Series([1, 2, 1, 2, np.nan])

exp = pd.Series([1, 2, np.nan, 2, 1, 2, 1, 2, 1, 2, np.nan])
exp = pd.Series([1, 2, np.nan, 2, 1, 2, 1, 2, 1, 2, np.nan],
dtype='object')
tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp)
tm.assert_series_equal(s1.append([s2, s3], ignore_index=True), exp)

exp = pd.Series([1, 2, 1, 2, np.nan, 1, 2, np.nan, 2, 1, 2])
exp = pd.Series([1, 2, 1, 2, np.nan, 1, 2, np.nan, 2, 1, 2],
dtype='object')
tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp)
tm.assert_series_equal(s3.append([s1, s2], ignore_index=True), exp)

Expand Down Expand Up @@ -669,7 +671,7 @@ def test_concat_categorical_coercion_nan(self):
s1 = pd.Series([1, np.nan], dtype='category')
s2 = pd.Series([np.nan, np.nan])

exp = pd.Series([1, np.nan, np.nan, np.nan])
exp = pd.Series([1, np.nan, np.nan, np.nan], dtype='object')
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
tm.assert_series_equal(s1.append(s2, ignore_index=True), exp)

Expand Down