Skip to content

DOC: fix DataFrame.quantile docstring and doctests #23936

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Dec 9, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ci/code_checks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ if [[ -z "$CHECK" || "$CHECK" == "doctests" ]]; then

MSG='Doctests frame.py' ; echo $MSG
pytest -q --doctest-modules pandas/core/frame.py \
-k"-axes -combine -itertuples -join -pivot_table -quantile -query -reindex -reindex_axis -round"
-k"-axes -combine -itertuples -join -pivot_table -query -reindex -reindex_axis -round"
RET=$(($RET + $?)) ; echo $MSG "DONE"

MSG='Doctests series.py' ; echo $MSG
Expand Down
29 changes: 14 additions & 15 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -7463,15 +7463,13 @@ def quantile(self, q=0.5, axis=0, numeric_only=True,
Parameters
----------
q : float or array-like, default 0.5 (50% quantile)
0 <= q <= 1, the quantile(s) to compute
Value between 0 <= q <= 1, the quantile(s) to compute.
axis : {0, 1, 'index', 'columns'} (default 0)
0 or 'index' for row-wise, 1 or 'columns' for column-wise
numeric_only : boolean, default True
Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
numeric_only : bool, default True
If False, the quantile of datetime and timedelta data will be
computed as well
computed as well.
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
.. versionadded:: 0.18.0

This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`:

Expand All @@ -7482,6 +7480,8 @@ def quantile(self, q=0.5, axis=0, numeric_only=True,
* nearest: `i` or `j` whichever is nearest.
* midpoint: (`i` + `j`) / 2.

.. versionadded:: 0.18.0

Returns
-------
quantiles : Series or DataFrame
Expand All @@ -7494,18 +7494,17 @@ def quantile(self, q=0.5, axis=0, numeric_only=True,

See Also
--------
pandas.core.window.Rolling.quantile
numpy.percentile
core.window.Rolling.quantile: Rolling quantile.
numpy.percentile: Numpy function to compute the percentile.

Examples
--------

>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
columns=['a', 'b'])
... columns=['a', 'b'])
>>> df.quantile(.1)
a 1.3
b 3.7
dtype: float64
Name: 0.1, dtype: float64
>>> df.quantile([.1, .5])
a b
0.1 1.3 3.7
Expand All @@ -7515,10 +7514,10 @@ def quantile(self, q=0.5, axis=0, numeric_only=True,
datetime and timedelta data.

>>> df = pd.DataFrame({'A': [1, 2],
'B': [pd.Timestamp('2010'),
pd.Timestamp('2011')],
'C': [pd.Timedelta('1 days'),
pd.Timedelta('2 days')]})
... 'B': [pd.Timestamp('2010'),
... pd.Timestamp('2011')],
... 'C': [pd.Timedelta('1 days'),
... pd.Timedelta('2 days')]})
>>> df.quantile(0.5, numeric_only=False)
A 1.5
B 2010-07-02 12:00:00
Expand Down