Skip to content

DOC: Fix PEP-8 issues in visualization.rst #23899

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 25, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 60 additions & 42 deletions doc/source/visualization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,11 @@

import numpy as np
import pandas as pd

np.random.seed(123456)
np.set_printoptions(precision=4, suppress=True)
pd.options.display.max_rows = 15
import matplotlib
# matplotlib.style.use('default')
import matplotlib.pyplot as plt
plt.close('all')


*************
Visualization
Expand Down Expand Up @@ -50,7 +48,8 @@ The ``plot`` method on Series and DataFrame is just a simple wrapper around

.. ipython:: python

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()

@savefig series_plot_basic.png
Expand All @@ -69,11 +68,13 @@ On DataFrame, :meth:`~DataFrame.plot` is a convenience to plot all of the column

.. ipython:: python

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = pd.DataFrame(np.random.randn(1000, 4),
index=ts.index, columns=list('ABCD'))
df = df.cumsum()

plt.figure();
@savefig frame_plot_basic.png
plt.figure(); df.plot();
df.plot();

You can plot one column versus another using the `x` and `y` keywords in
:meth:`~DataFrame.plot`:
Expand Down Expand Up @@ -355,8 +356,8 @@ more complicated colorization, you can get each drawn artists by passing

.. ipython:: python

color = dict(boxes='DarkGreen', whiskers='DarkOrange',
medians='DarkBlue', caps='Gray')
color = {'boxes': 'DarkGreen', 'whiskers': 'DarkOrange',
'medians': 'DarkBlue', 'caps': 'Gray'}

@savefig box_new_colorize.png
df.plot.box(color=color, sym='r+')
Expand Down Expand Up @@ -391,7 +392,7 @@ The existing interface ``DataFrame.boxplot`` to plot boxplot still can be used.
.. ipython:: python
:okwarning:

df = pd.DataFrame(np.random.rand(10,5))
df = pd.DataFrame(np.random.rand(10, 5))
plt.figure();

@savefig box_plot_ex.png
Expand All @@ -409,8 +410,8 @@ groupings. For instance,
.. ipython:: python
:okwarning:

df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] )
df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
df = pd.DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2'])
df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'])

plt.figure();

Expand All @@ -429,14 +430,14 @@ columns:
.. ipython:: python
:okwarning:

df = pd.DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3'])
df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])
df = pd.DataFrame(np.random.rand(10, 3), columns=['Col1', 'Col2', 'Col3'])
df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'])
df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A', 'B', 'A', 'B', 'A', 'B'])

plt.figure();

@savefig box_plot_ex3.png
bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
bp = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])

.. ipython:: python
:suppress:
Expand Down Expand Up @@ -594,7 +595,7 @@ bubble chart using a column of the ``DataFrame`` as the bubble size.
.. ipython:: python

@savefig scatter_plot_bubble.png
df.plot.scatter(x='a', y='b', s=df['c']*200);
df.plot.scatter(x='a', y='b', s=df['c'] * 200);

.. ipython:: python
:suppress:
Expand Down Expand Up @@ -654,8 +655,7 @@ given by column ``z``. The bins are aggregated with NumPy's ``max`` function.
df['z'] = np.random.uniform(0, 3, 1000)

@savefig hexbin_plot_agg.png
df.plot.hexbin(x='a', y='b', C='z', reduce_C_function=np.max,
gridsize=25)
df.plot.hexbin(x='a', y='b', C='z', reduce_C_function=np.max, gridsize=25)

.. ipython:: python
:suppress:
Expand All @@ -682,7 +682,8 @@ A ``ValueError`` will be raised if there are any negative values in your data.

.. ipython:: python

series = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series')
series = pd.Series(3 * np.random.rand(4),
index=['a', 'b', 'c', 'd'], name='series')

@savefig series_pie_plot.png
series.plot.pie(figsize=(6, 6))
Expand Down Expand Up @@ -711,7 +712,8 @@ drawn in each pie plots by default; specify ``legend=False`` to hide it.

.. ipython:: python

df = pd.DataFrame(3 * np.random.rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y'])
df = pd.DataFrame(3 * np.random.rand(4, 2),
index=['a', 'b', 'c', 'd'], columns=['x', 'y'])

@savefig df_pie_plot.png
df.plot.pie(subplots=True, figsize=(8, 4))
Expand Down Expand Up @@ -939,8 +941,8 @@ be passed, and when ``lag=1`` the plot is essentially ``data[:-1]`` vs.

plt.figure()

data = pd.Series(0.1 * np.random.rand(1000) +
0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))
spacing = np.linspace(-99 * np.pi, 99 * np.pi, num=1000)
data = pd.Series(0.1 * np.random.rand(1000) + 0.9 * np.sin(spacing))

@savefig lag_plot.png
lag_plot(data)
Expand Down Expand Up @@ -976,8 +978,8 @@ autocorrelation plots.

plt.figure()

data = pd.Series(0.7 * np.random.rand(1000) +
0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))
spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
data = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))

@savefig autocorrelation_plot.png
autocorrelation_plot(data)
Expand Down Expand Up @@ -1078,8 +1080,9 @@ layout and formatting of the returned plot:

.. ipython:: python

plt.figure();
@savefig series_plot_basic2.png
plt.figure(); ts.plot(style='k--', label='Series');
ts.plot(style='k--', label='Series');

.. ipython:: python
:suppress:
Expand All @@ -1106,7 +1109,8 @@ shown by default.

.. ipython:: python

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = pd.DataFrame(np.random.randn(1000, 4),
index=ts.index, columns=list('ABCD'))
df = df.cumsum()

@savefig frame_plot_basic_noleg.png
Expand All @@ -1130,7 +1134,8 @@ You may pass ``logy`` to get a log-scale Y axis.

.. ipython:: python

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
ts = np.exp(ts.cumsum())

@savefig series_plot_logy.png
Expand Down Expand Up @@ -1326,14 +1331,15 @@ otherwise you will see a warning.

.. ipython:: python

fig, axes = plt.subplots(4, 4, figsize=(6, 6));
plt.subplots_adjust(wspace=0.5, hspace=0.5);
fig, axes = plt.subplots(4, 4, figsize=(6, 6))
plt.subplots_adjust(wspace=0.5, hspace=0.5)
target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]
target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]

df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False);
@savefig frame_plot_subplots_multi_ax.png
(-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False);
(-df).plot(subplots=True, ax=target2, legend=False,
sharex=False, sharey=False);

.. ipython:: python
:suppress:
Expand All @@ -1346,10 +1352,12 @@ Another option is passing an ``ax`` argument to :meth:`Series.plot` to plot on a
:suppress:

np.random.seed(123456)
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
columns=list('ABCD'))
df = df.cumsum()

.. ipython:: python
Expand All @@ -1360,12 +1368,15 @@ Another option is passing an ``ax`` argument to :meth:`Series.plot` to plot on a
.. ipython:: python

fig, axes = plt.subplots(nrows=2, ncols=2)
df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A');
df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B');
df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C');

df['A'].plot(ax=axes[0, 0]);
axes[0, 0].set_title('A');
df['B'].plot(ax=axes[0, 1]);
axes[0, 1].set_title('B');
df['C'].plot(ax=axes[1, 0]);
axes[1, 0].set_title('C');
df['D'].plot(ax=axes[1, 1]);
@savefig series_plot_multi.png
df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D');
axes[1, 1].set_title('D');

.. ipython:: python
:suppress:
Expand All @@ -1392,10 +1403,16 @@ Here is an example of one way to easily plot group means with standard deviation
.. ipython:: python

# Generate the data
ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']], names=['letter', 'word'])
df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3)
ix3 = pd.MultiIndex.from_arrays([
['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'],
['foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']],
names=['letter', 'word'])

df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2],
'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3)

# Group by index labels and take the means and standard deviations for each group
# Group by index labels and take the means and standard deviations
# for each group
gp3 = df3.groupby(level=('letter', 'word'))
means = gp3.mean()
errors = gp3.std()
Expand Down Expand Up @@ -1616,7 +1633,8 @@ when plotting a large number of points.
plt.plot(price.index, price, 'k')
plt.plot(ma.index, ma, 'b')
@savefig bollinger.png
plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
plt.fill_between(mstd.index, ma - 2 * mstd, ma + 2 * mstd,
color='b', alpha=0.2)

.. ipython:: python
:suppress:
Expand Down