Skip to content

DOC: Fix format of basics.rst, following PEP-8 standard #23802

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Nov 21, 2018
72 changes: 36 additions & 36 deletions doc/source/basics.rst
Original file line number Diff line number Diff line change
Expand Up @@ -307,14 +307,13 @@ To evaluate single-element pandas objects in a boolean context, use the method

.. code-block:: python

>>> if df: # noqa: E999
...
>>> if df: # noqa: E999
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If the ... is giving problems with the validation I'd replace it by a pass, and we can also remove the noqa comment then.


Or

.. code-block:: python

>>> df and df2
>>> df and df2

These will both raise errors, as you are trying to compare multiple values.

Expand All @@ -330,17 +329,17 @@ Comparing if objects are equivalent
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Often you may find that there is more than one way to compute the same
result. As a simple example, consider ``df+df`` and ``df*2``. To test
result. As a simple example, consider ``df + df`` and ``df * 2``. To test
that these two computations produce the same result, given the tools
shown above, you might imagine using ``(df+df == df*2).all()``. But in
shown above, you might imagine using ``(df + df == df * 2).all()``. But in
fact, this expression is False:

.. ipython:: python

df + df == df * 2
(df + df == df * 2).all()

Notice that the boolean DataFrame ``df+df == df*2`` contains some False values!
Notice that the boolean DataFrame ``df + df == df * 2`` contains some False values!
This is because NaNs do not compare as equals:

.. ipython:: python
Expand Down Expand Up @@ -1506,14 +1505,15 @@ In short, basic iteration (``for i in object``) produces:

Thus, for example, iterating over a DataFrame gives you the column names:

.. ipython::
.. ipython:: python

df = pd.DataFrame(
{'col1': np.random.randn(3), 'col2': np.random.randn(3)},
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

just a personal opinion here, but I think this style is easier to read:

df = pd.DataFrame({'col1': np.random.randn(3),
                   'col2': np.random.randn(3)},

index=['a', 'b', 'c'])

In [0]: df = pd.DataFrame({'col1': np.random.randn(3), 'col2': np.random.randn(3)},
...: index=['a', 'b', 'c'])
for col in df:
print(col)

In [0]: for col in df:
...: print(col)
...:

Pandas objects also have the dict-like :meth:`~DataFrame.iteritems` method to
iterate over the (key, value) pairs.
Expand Down Expand Up @@ -1576,12 +1576,11 @@ through key-value pairs:

For example:

.. ipython::
.. ipython:: python

In [0]: for item, frame in wp.iteritems():
...: print(item)
...: print(frame)
...:
for item, frame in wp.iteritems():
print(item)
print(frame)

.. _basics.iterrows:

Expand All @@ -1592,11 +1591,10 @@ iterrows
DataFrame as Series objects. It returns an iterator yielding each
index value along with a Series containing the data in each row:

.. ipython::
.. ipython:: python

In [0]: for row_index, row in df.iterrows():
...: print('%s\n%s' % (row_index, row))
...:
for row_index, row in df.iterrows():
print('%s\n%s' % (row_index, row))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you mind changing this by print(row_index, row, sep='\n')


.. note::

Expand Down Expand Up @@ -1969,10 +1967,12 @@ with the data type of each column.

.. ipython:: python

dft = pd.DataFrame(dict(A = np.random.rand(3), B = 1, C = 'foo',
D = pd.Timestamp('20010102'),
E = pd.Series([1.0]*3).astype('float32'),
F = False, G = pd.Series([1]*3,dtype='int8')))
dft = pd.DataFrame(dict(A=np.random.rand(3),
B=1,
C='foo',
D=pd.Timestamp('20010102'),
E=pd.Series([1.0] * 3).astype('float32'),
F=False, G=pd.Series([1] * 3, dtype='int8')))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

could you move G to thenext line for consistency and clairity?

dft
dft.dtypes

Expand Down Expand Up @@ -2011,10 +2011,10 @@ different numeric dtypes will **NOT** be combined. The following example will gi
df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float32')
df1
df1.dtypes
df2 = pd.DataFrame(dict(A = pd.Series(np.random.randn(8), dtype='float16'),
B = pd.Series(np.random.randn(8)),
C = pd.Series(np.array(
np.random.randn(8), dtype='uint8')) ))
df2 = pd.DataFrame(dict(A=pd.Series(np.random.randn(8), dtype='float16'),
B=pd.Series(np.random.randn(8)),
C=pd.Series(np.array(
np.random.randn(8), dtype='uint8'))))
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this is clearer here, and should fit in 79 characters:

C=pd.Series(np.array(np.random.randn(8),
                     dtype='uint8'))))

df2
df2.dtypes

Expand All @@ -2029,7 +2029,7 @@ The following will all result in ``int64`` dtypes.

pd.DataFrame([1, 2], columns=['a']).dtypes
pd.DataFrame({'a': [1, 2]}).dtypes
pd.DataFrame({'a': 1 }, index=list(range(2))).dtypes
pd.DataFrame({'a': 1}, index=list(range(2))).dtypes

Note that Numpy will choose *platform-dependent* types when creating arrays.
The following **WILL** result in ``int32`` on 32-bit platform.
Expand Down Expand Up @@ -2084,8 +2084,8 @@ Convert a subset of columns to a specified type using :meth:`~DataFrame.astype`.

.. ipython:: python

dft = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6], 'c': [7, 8, 9]})
dft[['a','b']] = dft[['a','b']].astype(np.uint8)
dft = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]})
dft[['a', 'b']] = dft[['a', 'b']].astype(np.uint8)
dft
dft.dtypes

Expand All @@ -2095,7 +2095,7 @@ Convert certain columns to a specific dtype by passing a dict to :meth:`~DataFra

.. ipython:: python

dft1 = pd.DataFrame({'a': [1,0,1], 'b': [4,5,6], 'c': [7, 8, 9]})
dft1 = pd.DataFrame({'a': [1, 0, 1], 'b': [4, 5, 6], 'c': [7, 8, 9]})
dft1 = dft1.astype({'a': np.bool, 'c': np.float64})
dft1
dft1.dtypes
Expand All @@ -2108,7 +2108,7 @@ Convert certain columns to a specific dtype by passing a dict to :meth:`~DataFra

.. ipython:: python

dft = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6], 'c': [7, 8, 9]})
dft = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]})
dft.loc[:, ['a', 'b']].astype(np.uint8).dtypes
dft.loc[:, ['a', 'b']] = dft.loc[:, ['a', 'b']].astype(np.uint8)
dft.dtypes
Expand Down Expand Up @@ -2244,7 +2244,7 @@ See also :ref:`Support for integer NA <gotchas.intna>`.
dfi
dfi.dtypes

casted = dfi[dfi>0]
casted = dfi[dfi > 0]
casted
casted.dtypes

Expand All @@ -2256,7 +2256,7 @@ While float dtypes are unchanged.
dfa['A'] = dfa['A'].astype('float32')
dfa.dtypes

casted = dfa[df2>0]
casted = dfa[df2 > 0]
casted
casted.dtypes

Expand Down