Skip to content

API: DataFrame.__getitem__ returns Series for sparse column #23561

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 11, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.24.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -560,6 +560,7 @@ changes were made:
- The result of concatenating a mix of sparse and dense Series is a Series with sparse values, rather than a ``SparseSeries``.
- ``SparseDataFrame.combine`` and ``DataFrame.combine_first`` no longer supports combining a sparse column with a dense column while preserving the sparse subtype. The result will be an object-dtype SparseArray.
- Setting :attr:`SparseArray.fill_value` to a fill value with a different dtype is now allowed.
- ``DataFrame[column]`` is now a :class:`Series` with sparse values, rather than a :class:`SparseSeries`, when slicing a single column with sparse values (:issue:`23559`).

Some new warnings are issued for operations that require or are likely to materialize a large dense array:

Expand Down
21 changes: 0 additions & 21 deletions pandas/core/dtypes/concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,27 +101,6 @@ def _get_frame_result_type(result, objs):
ABCSparseDataFrame))


def _get_sliced_frame_result_type(data, obj):
"""
return appropriate class of Series. When data is sparse
it will return a SparseSeries, otherwise it will return
the Series.

Parameters
----------
data : array-like
obj : DataFrame

Returns
-------
Series or SparseSeries
"""
if is_sparse(data):
from pandas.core.sparse.api import SparseSeries
return SparseSeries
return obj._constructor_sliced


def _concat_compat(to_concat, axis=0):
"""
provide concatenation of an array of arrays each of which is a single
Expand Down
3 changes: 1 addition & 2 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,6 @@
is_iterator,
is_sequence,
is_named_tuple)
from pandas.core.dtypes.concat import _get_sliced_frame_result_type
from pandas.core.dtypes.generic import ABCSeries, ABCIndexClass, ABCMultiIndex
from pandas.core.dtypes.missing import isna, notna

Expand Down Expand Up @@ -3225,7 +3224,7 @@ def _box_item_values(self, key, values):

def _box_col_values(self, values, items):
""" provide boxed values for a column """
klass = _get_sliced_frame_result_type(values, self)
klass = self._constructor_sliced
return klass(values, index=self.index, name=items, fastpath=True)

def __setitem__(self, key, value):
Expand Down
27 changes: 21 additions & 6 deletions pandas/tests/frame/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -2278,19 +2278,34 @@ def test_getitem_ix_float_duplicates(self):
expect = df.iloc[[1, -1], 0]
assert_series_equal(df.loc[0.2, 'a'], expect)

def test_getitem_sparse_column(self):
# https://github.com/pandas-dev/pandas/issues/23559
data = pd.SparseArray([0, 1])
df = pd.DataFrame({"A": data})
expected = pd.Series(data, name="A")
result = df['A']
tm.assert_series_equal(result, expected)

result = df.iloc[:, 0]
tm.assert_series_equal(result, expected)

result = df.loc[:, 'A']
tm.assert_series_equal(result, expected)

def test_setitem_with_sparse_value(self):
# GH8131
df = pd.DataFrame({'c_1': ['a', 'b', 'c'], 'n_1': [1., 2., 3.]})
sp_series = pd.Series([0, 0, 1]).to_sparse(fill_value=0)
df['new_column'] = sp_series
assert_series_equal(df['new_column'], sp_series, check_names=False)
sp_array = pd.SparseArray([0, 0, 1])
df['new_column'] = sp_array
assert_series_equal(df['new_column'],
pd.Series(sp_array, name='new_column'),
check_names=False)

def test_setitem_with_unaligned_sparse_value(self):
df = pd.DataFrame({'c_1': ['a', 'b', 'c'], 'n_1': [1., 2., 3.]})
sp_series = (pd.Series([0, 0, 1], index=[2, 1, 0])
.to_sparse(fill_value=0))
sp_series = pd.Series(pd.SparseArray([0, 0, 1]), index=[2, 1, 0])
df['new_column'] = sp_series
exp = pd.SparseSeries([1, 0, 0], name='new_column')
exp = pd.Series(pd.SparseArray([1, 0, 0]), name='new_column')
assert_series_equal(df['new_column'], exp)

def test_setitem_with_unaligned_tz_aware_datetime_column(self):
Expand Down
5 changes: 0 additions & 5 deletions pandas/tests/sparse/series/test_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,11 +160,6 @@ def test_construct_DataFrame_with_sp_series(self):
df.dtypes
str(df)

tm.assert_sp_series_equal(df['col'], self.bseries, check_names=False)

result = df.iloc[:, 0]
tm.assert_sp_series_equal(result, self.bseries, check_names=False)

# blocking
expected = Series({'col': 'float64:sparse'})
result = df.ftypes
Expand Down