Skip to content

CLN: small clean-up of IntervalIndex #22956

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 1 addition & 6 deletions pandas/core/arrays/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,12 +108,7 @@ class IntervalArray(IntervalMixin, ExtensionArray):
_na_value = _fill_value = np.nan

def __new__(cls, data, closed=None, dtype=None, copy=False,
fastpath=False, verify_integrity=True):

if fastpath:
return cls._simple_new(data.left, data.right, closed,
copy=copy, dtype=dtype,
verify_integrity=False)
verify_integrity=True):

if isinstance(data, ABCSeries) and is_interval_dtype(data):
data = data.values
Expand Down
49 changes: 8 additions & 41 deletions pandas/core/indexes/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,17 +146,13 @@ class IntervalIndex(IntervalMixin, Index):
_mask = None

def __new__(cls, data, closed=None, dtype=None, copy=False,
name=None, fastpath=False, verify_integrity=True):

if fastpath:
return cls._simple_new(data, name)
name=None, verify_integrity=True):

if name is None and hasattr(data, 'name'):
name = data.name

with rewrite_exception("IntervalArray", cls.__name__):
array = IntervalArray(data, closed=closed, copy=copy, dtype=dtype,
fastpath=fastpath,
verify_integrity=verify_integrity)

return cls._simple_new(array, name)
Expand Down Expand Up @@ -187,14 +183,6 @@ def _shallow_copy(self, left=None, right=None, **kwargs):
attributes.update(kwargs)
return self._simple_new(result, **attributes)

@cache_readonly
def hasnans(self):
"""
Return if the IntervalIndex has any nans; enables various performance
speedups
"""
return self._isnan.any()

@cache_readonly
def _isnan(self):
"""Return a mask indicating if each value is NA"""
Expand All @@ -206,10 +194,6 @@ def _isnan(self):
def _engine(self):
return IntervalTree(self.left, self.right, closed=self.closed)

@property
def _constructor(self):
return type(self)

def __contains__(self, key):
"""
return a boolean if this key is IN the index
Expand Down Expand Up @@ -394,18 +378,7 @@ def _values(self):

@cache_readonly
def _ndarray_values(self):
left = self.left
right = self.right
mask = self._isnan
closed = self.closed

result = np.empty(len(left), dtype=object)
for i in range(len(left)):
if mask[i]:
result[i] = np.nan
else:
result[i] = Interval(left[i], right[i], closed)
return result
return np.array(self._data)

def __array__(self, result=None):
""" the array interface, return my values """
Expand Down Expand Up @@ -892,18 +865,12 @@ def take(self, indices, axis=0, allow_fill=True,
return self._simple_new(result, **attributes)

def __getitem__(self, value):
mask = self._isnan[value]
if is_scalar(mask) and mask:
return self._na_value

left = self.left[value]
right = self.right[value]

# scalar
if not isinstance(left, Index):
return Interval(left, right, self.closed)

return self._shallow_copy(left, right)
result = self._data[value]
if isinstance(result, IntervalArray):
return self._shallow_copy(result)
else:
# scalar
return result

# __repr__ associated methods are based on MultiIndex

Expand Down