Skip to content

Allow merging on object / non-object column #21681

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Jan 3, 2019
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.24.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -426,6 +426,7 @@ Backwards incompatible API changes
- :func:`read_csv` will now raise a ``ValueError`` if a column with missing values is declared as having dtype ``bool`` (:issue:`20591`)
- The column order of the resultant :class:`DataFrame` from :meth:`MultiIndex.to_frame` is now guaranteed to match the :attr:`MultiIndex.names` order. (:issue:`22420`)
- :func:`pd.offsets.generate_range` argument ``time_rule`` has been removed; use ``offset`` instead (:issue:`24157`)
- In 0.23.x, pandas would raise a ``ValueError`` on a merge of a numeric column (e.g. ``int`` dtyped column) and an ``object`` dtyped column (:issue:`9780`). We have re-enabled the ability to merge ``object`` and other dtypes (:issue:`21681`)

Percentage change on groupby
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Expand Down
64 changes: 44 additions & 20 deletions pandas/core/reshape/merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
is_datetime64tz_dtype, is_datetimelike, is_dtype_equal,
is_extension_array_dtype, is_float_dtype, is_int64_dtype, is_integer,
is_integer_dtype, is_list_like, is_number, is_numeric_dtype,
needs_i8_conversion)
is_object_dtype, needs_i8_conversion)
from pandas.core.dtypes.missing import isnull, na_value_for_dtype

from pandas import Categorical, DataFrame, Index, MultiIndex, Series, Timedelta
Expand Down Expand Up @@ -901,6 +901,8 @@ def _maybe_coerce_merge_keys(self):

lk_is_cat = is_categorical_dtype(lk)
rk_is_cat = is_categorical_dtype(rk)
lk_is_object = is_object_dtype(lk)
rk_is_object = is_object_dtype(rk)

# if either left or right is a categorical
# then the must match exactly in categories & ordered
Expand All @@ -925,7 +927,7 @@ def _maybe_coerce_merge_keys(self):
# the same, then proceed
if is_numeric_dtype(lk) and is_numeric_dtype(rk):
if lk.dtype.kind == rk.dtype.kind:
pass
continue

# check whether ints and floats
elif is_integer_dtype(rk) and is_float_dtype(lk):
Expand All @@ -934,29 +936,49 @@ def _maybe_coerce_merge_keys(self):
'columns where the float values '
'are not equal to their int '
'representation', UserWarning)
continue

elif is_float_dtype(rk) and is_integer_dtype(lk):
if not (rk == rk.astype(lk.dtype))[~np.isnan(rk)].all():
warnings.warn('You are merging on int and float '
'columns where the float values '
'are not equal to their int '
'representation', UserWarning)
continue

# let's infer and see if we are ok
elif lib.infer_dtype(lk) == lib.infer_dtype(rk):
pass
continue

# Check if we are trying to merge on obviously
# incompatible dtypes GH 9780, GH 15800

# boolean values are considered as numeric, but are still allowed
# to be merged on object boolean values
elif ((is_numeric_dtype(lk) and not is_bool_dtype(lk))
and not is_numeric_dtype(rk)):
raise ValueError(msg)
elif (not is_numeric_dtype(lk)
and (is_numeric_dtype(rk) and not is_bool_dtype(rk))):
raise ValueError(msg)
# bool values are coerced to object
elif ((lk_is_object and is_bool_dtype(rk)) or
(is_bool_dtype(lk) and rk_is_object)):
pass

# object values are allowed to be merged
elif ((lk_is_object and is_numeric_dtype(rk)) or
(is_numeric_dtype(lk) and rk_is_object)):
inferred_left = lib.infer_dtype(lk)
inferred_right = lib.infer_dtype(rk)
bool_types = ['integer', 'mixed-integer', 'boolean', 'empty']
string_types = ['string', 'unicode', 'mixed', 'bytes', 'empty']

# inferred bool
if (inferred_left in bool_types and
inferred_right in bool_types):
pass

# unless we are merging non-string-like with string-like
elif ((inferred_left in string_types and
inferred_right not in string_types) or
(inferred_right in string_types and
inferred_left not in string_types)):
raise ValueError(msg)

# datetimelikes must match exactly
elif is_datetimelike(lk) and not is_datetimelike(rk):
raise ValueError(msg)
elif not is_datetimelike(lk) and is_datetimelike(rk):
Expand All @@ -966,22 +988,24 @@ def _maybe_coerce_merge_keys(self):
elif not is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk):
raise ValueError(msg)

elif lk_is_object and rk_is_object:
continue

# Houston, we have a problem!
# let's coerce to object if the dtypes aren't
# categorical, otherwise coerce to the category
# dtype. If we coerced categories to object,
# then we would lose type information on some
# columns, and end up trying to merge
# incompatible dtypes. See GH 16900.
else:
if name in self.left.columns:
typ = lk.categories.dtype if lk_is_cat else object
self.left = self.left.assign(
**{name: self.left[name].astype(typ)})
if name in self.right.columns:
typ = rk.categories.dtype if rk_is_cat else object
self.right = self.right.assign(
**{name: self.right[name].astype(typ)})
if name in self.left.columns:
typ = lk.categories.dtype if lk_is_cat else object
self.left = self.left.assign(
**{name: self.left[name].astype(typ)})
if name in self.right.columns:
typ = rk.categories.dtype if rk_is_cat else object
self.right = self.right.assign(
**{name: self.right[name].astype(typ)})

def _validate_specification(self):
# Hm, any way to make this logic less complicated??
Expand Down
55 changes: 30 additions & 25 deletions pandas/tests/reshape/merge/test_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -924,10 +924,6 @@ class TestMergeDtypes(object):
@pytest.mark.parametrize('right_vals', [
['foo', 'bar'],
Series(['foo', 'bar']).astype('category'),
[1, 2],
[1.0, 2.0],
Series([1, 2], dtype='uint64'),
Series([1, 2], dtype='int32')
])
def test_different(self, right_vals):

Expand All @@ -942,22 +938,8 @@ def test_different(self, right_vals):
# GH 9780
# We allow merging on object and categorical cols and cast
# categorical cols to object
if (is_categorical_dtype(right['A'].dtype) or
is_object_dtype(right['A'].dtype)):
result = pd.merge(left, right, on='A')
assert is_object_dtype(result.A.dtype)

# GH 9780
# We raise for merging on object col and int/float col and
# merging on categorical col and int/float col
else:
msg = ("You are trying to merge on "
"{lk_dtype} and {rk_dtype} columns. "
"If you wish to proceed you should use "
"pd.concat".format(lk_dtype=left['A'].dtype,
rk_dtype=right['A'].dtype))
with pytest.raises(ValueError, match=msg):
pd.merge(left, right, on='A')
result = pd.merge(left, right, on='A')
assert is_object_dtype(result.A.dtype)

@pytest.mark.parametrize('d1', [np.int64, np.int32,
np.int16, np.int8, np.uint8])
Expand Down Expand Up @@ -1056,6 +1038,33 @@ def test_merge_incompat_infer_boolean_object(self):
assert_frame_equal(result, expected)

@pytest.mark.parametrize('df1_vals, df2_vals', [

# merge on category coerces to object
([0, 1, 2], Series(['a', 'b', 'a']).astype('category')),
([0.0, 1.0, 2.0], Series(['a', 'b', 'a']).astype('category')),

# no not infer
([0, 1], pd.Series([False, True], dtype=object)),
([0, 1], pd.Series([False, True], dtype=bool)),
])
def test_merge_incompat_dtypes_are_ok(self, df1_vals, df2_vals):
# these are explicity allowed incompat merges, that pass thru
# the result type is dependent on if the values on the rhs are
# inferred, otherwise these will be coereced to object

df1 = DataFrame({'A': df1_vals})
df2 = DataFrame({'A': df2_vals})

result = pd.merge(df1, df2, on=['A'])
assert is_object_dtype(result.A.dtype)
result = pd.merge(df2, df1, on=['A'])
assert is_object_dtype(result.A.dtype)

@pytest.mark.parametrize('df1_vals, df2_vals', [
# do not infer to numeric

(Series([1, 2], dtype='uint64'), ["a", "b", "c"]),
(Series([1, 2], dtype='int32'), ["a", "b", "c"]),
([0, 1, 2], ["0", "1", "2"]),
([0.0, 1.0, 2.0], ["0", "1", "2"]),
([0, 1, 2], [u"0", u"1", u"2"]),
Expand All @@ -1065,12 +1074,8 @@ def test_merge_incompat_infer_boolean_object(self):
(pd.date_range('1/1/2011', periods=2, freq='D'), [0.0, 1.0]),
(pd.date_range('20130101', periods=3),
pd.date_range('20130101', periods=3, tz='US/Eastern')),
([0, 1, 2], Series(['a', 'b', 'a']).astype('category')),
([0.0, 1.0, 2.0], Series(['a', 'b', 'a']).astype('category')),
# TODO ([0, 1], pd.Series([False, True], dtype=bool)),
([0, 1], pd.Series([False, True], dtype=object))
])
def test_merge_incompat_dtypes(self, df1_vals, df2_vals):
def test_merge_incompat_dtypes_error(self, df1_vals, df2_vals):
# GH 9780, GH 15800
# Raise a ValueError when a user tries to merge on
# dtypes that are incompatible (e.g., obj and int/float)
Expand Down