Skip to content

Fix #21356: JSON nested_to_record Silently Drops Top-Level None Values #21363

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
Jun 8, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.23.1.txt
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ Fixed Regressions
- Fixed regression in constructors coercing NA values like ``None`` to strings when passing ``dtype=str`` (:issue:`21083`)
- Regression in :func:`pivot_table` where an ordered ``Categorical`` with missing
values for the pivot's ``index`` would give a mis-aligned result (:issue:`21133`)
- Fixed Regression in :func:`nested_to_record` which now flattens list of dictionaries and doesnot drop keys with value as `None` (:issue:`21356`)


.. _whatsnew_0231.performance:
Expand Down
2 changes: 0 additions & 2 deletions pandas/io/json/normalize.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,8 +80,6 @@ def nested_to_record(ds, prefix="", sep=".", level=0):
if level != 0: # so we skip copying for top level, common case
v = new_d.pop(k)
new_d[newkey] = v
elif v is None: # pop the key if the value is None
new_d.pop(k)
continue
else:
v = new_d.pop(k)
Expand Down
19 changes: 11 additions & 8 deletions pandas/tests/io/json/test_normalize.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,15 +238,16 @@ def test_non_ascii_key(self):
tm.assert_frame_equal(result, expected)

def test_missing_field(self, author_missing_data):
# GH20030: Checks for robustness of json_normalize - should
# unnest records where only the first record has a None value
# GH20030:
result = json_normalize(author_missing_data)
ex_data = [
{'author_name.first': np.nan,
{'info': np.nan,
'author_name.first': np.nan,
'author_name.last_name': np.nan,
'info.created_at': np.nan,
'info.last_updated': np.nan},
{'author_name.first': 'Jane',
{'info': None,
'author_name.first': 'Jane',
'author_name.last_name': 'Doe',
'info.created_at': '11/08/1993',
'info.last_updated': '26/05/2012'}
Expand Down Expand Up @@ -351,9 +352,8 @@ def test_json_normalize_errors(self):
errors='raise'
)

def test_nonetype_dropping(self):
# GH20030: Checks that None values are dropped in nested_to_record
# to prevent additional columns of nans when passed to DataFrame
def test_donot_drop_nonevalues(self):
# GH21356
data = [
{'info': None,
'author_name':
Expand All @@ -367,7 +367,8 @@ def test_nonetype_dropping(self):
]
result = nested_to_record(data)
expected = [
{'author_name.first': 'Smith',
{'info': None,
'author_name.first': 'Smith',
'author_name.last_name': 'Appleseed'},
{'author_name.first': 'Jane',
'author_name.last_name': 'Doe',
Expand Down Expand Up @@ -395,6 +396,7 @@ def test_nonetype_top_level_bottom_level(self):
}
result = nested_to_record(data)
expected = {
'id': None,
'location.country.state.id': None,
'location.country.state.town.info.id': None,
'location.country.state.town.info.region': None,
Expand Down Expand Up @@ -423,6 +425,7 @@ def test_nonetype_multiple_levels(self):
}
result = nested_to_record(data)
expected = {
'id': None,
'location.id': None,
'location.country.id': None,
'location.country.state.id': None,
Expand Down