Skip to content

DOC: update the pandas.core.resample.Resampler.fillna docstring #20379

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 17, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 147 additions & 5 deletions pandas/core/resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -624,18 +624,160 @@ def backfill(self, limit=None):

def fillna(self, method, limit=None):
"""
Fill missing values
Fill missing values introduced by upsampling.

In statistics, imputation is the process of replacing missing data with
substituted values [1]_. When resampling data, missing values may
appear (e.g., when the resampling frequency is higher than the original
frequency).

Missing values that existed in the orginal data will
not be modified.

Parameters
----------
method : str, method of resampling ('ffill', 'bfill')
method : {'pad', 'backfill', 'ffill', 'bfill', 'nearest'}
Method to use for filling holes in resampled data

* 'pad' or 'ffill': use previous valid observation to fill gap
(forward fill).
* 'backfill' or 'bfill': use next valid observation to fill gap.
* 'nearest': use nearest valid observation to fill gap.

limit : integer, optional
limit of how many values to fill
Limit of how many consecutive missing values to fill.

Returns
-------
Series or DataFrame
An upsampled Series or DataFrame with missing values filled.

See Also
--------
Series.fillna
DataFrame.fillna
backfill : Backward fill NaN values in the resampled data.
pad : Forward fill NaN values in the resampled data.
nearest : Fill NaN values in the resampled data
with nearest neighbor starting from center.
pandas.Series.fillna : Fill NaN values in the Series using the
specified method, which can be 'bfill' and 'ffill'.
pandas.DataFrame.fillna : Fill NaN values in the DataFrame using the
specified method, which can be 'bfill' and 'ffill'.

Examples
--------
Resampling a Series:

>>> s = pd.Series([1, 2, 3],
... index=pd.date_range('20180101', periods=3, freq='h'))
>>> s
2018-01-01 00:00:00 1
2018-01-01 01:00:00 2
2018-01-01 02:00:00 3
Freq: H, dtype: int64

Without filling the missing values you get:

>>> s.resample("30min").asfreq()
2018-01-01 00:00:00 1.0
2018-01-01 00:30:00 NaN
2018-01-01 01:00:00 2.0
2018-01-01 01:30:00 NaN
2018-01-01 02:00:00 3.0
Freq: 30T, dtype: float64

>>> s.resample('30min').fillna("backfill")
2018-01-01 00:00:00 1
2018-01-01 00:30:00 2
2018-01-01 01:00:00 2
2018-01-01 01:30:00 3
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64

>>> s.resample('15min').fillna("backfill", limit=2)
2018-01-01 00:00:00 1.0
2018-01-01 00:15:00 NaN
2018-01-01 00:30:00 2.0
2018-01-01 00:45:00 2.0
2018-01-01 01:00:00 2.0
2018-01-01 01:15:00 NaN
2018-01-01 01:30:00 3.0
2018-01-01 01:45:00 3.0
2018-01-01 02:00:00 3.0
Freq: 15T, dtype: float64

>>> s.resample('30min').fillna("pad")
2018-01-01 00:00:00 1
2018-01-01 00:30:00 1
2018-01-01 01:00:00 2
2018-01-01 01:30:00 2
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64

>>> s.resample('30min').fillna("nearest")
2018-01-01 00:00:00 1
2018-01-01 00:30:00 2
2018-01-01 01:00:00 2
2018-01-01 01:30:00 3
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64

Missing values present before the upsampling are not affected.

>>> sm = pd.Series([1, None, 3],
... index=pd.date_range('20180101', periods=3, freq='h'))
>>> sm
2018-01-01 00:00:00 1.0
2018-01-01 01:00:00 NaN
2018-01-01 02:00:00 3.0
Freq: H, dtype: float64

>>> sm.resample('30min').fillna('backfill')
2018-01-01 00:00:00 1.0
2018-01-01 00:30:00 NaN
2018-01-01 01:00:00 NaN
2018-01-01 01:30:00 3.0
2018-01-01 02:00:00 3.0
Freq: 30T, dtype: float64

>>> sm.resample('30min').fillna('pad')
2018-01-01 00:00:00 1.0
2018-01-01 00:30:00 1.0
2018-01-01 01:00:00 NaN
2018-01-01 01:30:00 NaN
2018-01-01 02:00:00 3.0
Freq: 30T, dtype: float64

>>> sm.resample('30min').fillna('nearest')
2018-01-01 00:00:00 1.0
2018-01-01 00:30:00 NaN
2018-01-01 01:00:00 NaN
2018-01-01 01:30:00 3.0
2018-01-01 02:00:00 3.0
Freq: 30T, dtype: float64

DataFrame resampling is done column-wise. All the same options are
available.

>>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
... index=pd.date_range('20180101', periods=3,
... freq='h'))
>>> df
a b
2018-01-01 00:00:00 2.0 1
2018-01-01 01:00:00 NaN 3
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would add such an example with a missing value above for Series as well (or instead of this example).
I think using a Series will make it easier to understand and easier to focus on that specific behaviour.

In the end, we can limit the number of examples for DataFrame and basically say that for a DataFrame everything works similar as for Series column-by-column

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

2018-01-01 02:00:00 6.0 5

>>> df.resample('30min').fillna("bfill")
a b
2018-01-01 00:00:00 2.0 1
2018-01-01 00:30:00 NaN 3
2018-01-01 01:00:00 NaN 3
2018-01-01 01:30:00 6.0 5
2018-01-01 02:00:00 6.0 5

References
----------
.. [1] https://en.wikipedia.org/wiki/Imputation_(statistics)
"""
return self._upsample(method, limit=limit)

Expand Down