Skip to content

DOC: update the DataFrame.pivot docstring #20250

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Mar 12, 2018
Merged
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 21 additions & 17 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -4341,44 +4341,48 @@ def last_valid_index(self):

def pivot(self, index=None, columns=None, values=None):
"""
Return reshaped DataFrame organized by given index / column values.

Reshape data (produce a "pivot" table) based on column values. Uses
unique values from index / columns to form axes of the resulting
DataFrame.
unique values from specified `index` / `columns` to form axes of the resulting
DataFrame. This function does not support data aggregation, multiple
values will result in hierarchically indexed columns.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

in multiindexed columns.


Parameters
----------
index : string or object, optional
Column name to use to make new frame's index. If None, uses
Column to use to make new frame's index. If None, uses
existing index.
columns : string or object
Column name to use to make new frame's columns
Column to use to make new frame's columns.
values : string or object, optional
Column name to use for populating new frame's values. If not
Column to use for populating new frame's values. If not
specified, all remaining columns will be used and the result will
have hierarchically indexed columns
have hierarchically indexed columns.

Returns
-------
pivoted : DataFrame
DataFrame
Returns reshaped DataFrame.

See also
See Also
--------
DataFrame.pivot_table : generalization of pivot that can handle
duplicate values for one index/column pair
duplicate values for one index/column pair.
DataFrame.unstack : pivot based on the index values instead of a
column
column.

Notes
-----
For finer-tuned control, see hierarchical indexing documentation along
with the related stack/unstack methods
with the related stack/unstack methods.

Examples
--------

>>> df = pd.DataFrame({'foo': ['one','one','one','two','two','two'],
'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
'baz': [1, 2, 3, 4, 5, 6]})
... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
... 'baz': [1, 2, 3, 4, 5, 6]})
>>> df
foo bar baz
0 one A 1
Expand All @@ -4389,16 +4393,16 @@ def pivot(self, index=None, columns=None, values=None):
5 two C 6

>>> df.pivot(index='foo', columns='bar', values='baz')
A B C
bar A B C
foo
one 1 2 3
two 4 5 6

>>> df.pivot(index='foo', columns='bar')['baz']
A B C
bar A B C
foo
one 1 2 3
two 4 5 6


"""
from pandas.core.reshape.reshape import pivot
return pivot(self, index=index, columns=columns, values=values)
Expand Down