Skip to content

DOC: update the Index.isin docstring #20249

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 60 additions & 6 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -3396,8 +3396,11 @@ def map(self, mapper, na_action=None):

def isin(self, values, level=None):
"""
Return a boolean array where the index values are in `values`.

Compute boolean array of whether each index value is found in the
passed set of values.
passed set of values. The length of the returned boolean array matches
the length of the index.

Parameters
----------
Expand All @@ -3406,23 +3409,74 @@ def isin(self, values, level=None):

.. versionadded:: 0.18.1

Support for values as a set
Support for values as a set.

level : str or int, optional
Name or position of the index level to use (if the index is a
MultiIndex).
`MultiIndex`).

Returns
-------
is_contained : ndarray
NumPy array of boolean values.

See also
--------
Series.isin : Same for Series.
DataFrame.isin : Same method for DataFrames.

Notes
-----
In the case of `MultiIndex` you must either specify `values` as a
list-like object containing tuples that are the same length as the
number of levels, or specify `level`. Otherwise it will raise a
``ValueError``.

If `level` is specified:

- if it is the name of one *and only one* index level, use that level;
- otherwise it should be a number indicating level position.

Returns
-------
is_contained : ndarray (boolean dtype)
Examples
--------
>>> idx = pd.Index([1,2,3])
>>> idx
Int64Index([1, 2, 3], dtype='int64')

Check whether each index value in a list of values.
>>> idx.isin([1, 4])
array([ True, False, False])

>>> midx = pd.MultiIndex.from_arrays([[1,2,3],
... ['red', 'blue', 'green']],
... names=('number', 'color'))
>>> midx
MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']],
labels=[[0, 1, 2], [2, 0, 1]],
names=['number', 'color'])

Check whether the strings in the 'color' level of the MultiIndex
are in a list of colors.

>>> midx.isin(['red', 'orange', 'yellow'], level='color')
array([ True, False, False])

To check across the levels of a MultiIndex, pass a list of tuples:

>>> midx.isin([(1, 'red'), (3, 'red')])
array([ True, False, False])

For a DatetimeIndex, string values in `values` are converted to
Timestamps.

>>> dates = ['2000-03-11', '2000-03-12', '2000-03-13']
>>> dti = pd.to_datetime(dates)
>>> dti
DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'],
dtype='datetime64[ns]', freq=None)

>>> dti.isin(['2000-03-11'])
array([ True, False, False])
"""
if level is not None:
self._validate_index_level(level)
Expand Down
Loading