Skip to content

DOC: update the DataFrame.loc[] docstring #20229

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Mar 14, 2018
226 changes: 220 additions & 6 deletions pandas/core/indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -1413,7 +1413,8 @@ def _get_slice_axis(self, slice_obj, axis=None):


class _LocIndexer(_LocationIndexer):
"""Purely label-location based indexer for selection by label.
"""
Access a group of rows and columns by label(s) or a boolean array.

``.loc[]`` is primarily label based, but may also be used with a
boolean array.
Expand All @@ -1424,16 +1425,229 @@ class _LocIndexer(_LocationIndexer):
interpreted as a *label* of the index, and **never** as an
integer position along the index).
- A list or array of labels, e.g. ``['a', 'b', 'c']``.
- A slice object with labels, e.g. ``'a':'f'`` (note that contrary
to usual python slices, **both** the start and the stop are included!).
- A boolean array.
- A slice object with labels, e.g. ``'a':'f'``.

.. warning:: Note that contrary to usual python slices, **both** the
start and the stop are included

- A boolean array of the same length as the axis being sliced,
e.g. ``[True, False, True]``.
- A ``callable`` function with one argument (the calling Series, DataFrame
or Panel) and that returns valid output for indexing (one of the above)

``.loc`` will raise a ``KeyError`` when the items are not found.

See more at :ref:`Selection by Label <indexing.label>`

See Also
--------
DateFrame.at : Access a single value for a row/column label pair
DateFrame.iloc : Access group of rows and columns by integer position(s)
DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the
Series/DataFrame.
Series.loc : Access group of values using labels

Examples
--------
**Getting values**

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=['cobra', 'viper', 'sidewinder'],
... columns=['max_speed', 'shield'])
>>> df
max_speed shield
cobra 1 2
viper 4 5
sidewinder 7 8

Single label. Note this returns the row as a Series.

>>> df.loc['viper']
max_speed 4
shield 5
Name: viper, dtype: int64

List of labels. Note using ``[[]]`` returns a DataFrame.

>>> df.loc[['viper', 'sidewinder']]
max_speed shield
viper 4 5
sidewinder 7 8

Single label for row and column

>>> df.loc['cobra', 'shield']
2

Slice with labels for row and single label for column. As mentioned
above, note that both the start and stop of the slice are included.

>>> df.loc['cobra':'viper', 'max_speed']
cobra 1
viper 4
Name: max_speed, dtype: int64

Boolean list with the same length as the row axis

>>> df.loc[[False, False, True]]
max_speed shield
sidewinder 7 8

Conditional that returns a boolean Series

>>> df.loc[df['shield'] > 6]
max_speed shield
sidewinder 7 8

Conditional that returns a boolean Series with column labels specified

>>> df.loc[df['shield'] > 6, ['max_speed']]
max_speed
sidewinder 7

Callable that returns a boolean Series

>>> df.loc[lambda df: df['shield'] == 8]
max_speed shield
sidewinder 7 8

**Setting values**

Set value for all items matching the list of labels

>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
>>> df
max_speed shield
cobra 1 2
viper 4 50
sidewinder 7 50

Set value for an entire row

>>> df.loc['cobra'] = 10
>>> df
max_speed shield
cobra 10 10
viper 4 50
sidewinder 7 50

Set value for an entire column

>>> df.loc[:, 'max_speed'] = 30
>>> df
max_speed shield
cobra 30 10
viper 30 50
sidewinder 30 50

Set value for rows matching callable condition

>>> df.loc[df['shield'] > 35] = 0
>>> df
max_speed shield
cobra 30 10
viper 0 0
sidewinder 0 0

**Getting values on a DataFrame with an index that has integer labels**

Another example using integers for the index

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=[7, 8, 9], columns=['max_speed', 'shield'])
>>> df
max_speed shield
7 1 2
8 4 5
9 7 8

Slice with integer labels for rows. As mentioned above, note that both
the start and stop of the slice are included.

>>> df.loc[7:9]
max_speed shield
7 1 2
8 4 5
9 7 8

**Getting values with a MultiIndex**

A number of examples using a DataFrame with a MultiIndex

>>> tuples = [
... ('cobra', 'mark i'), ('cobra', 'mark ii'),
... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
... ('viper', 'mark ii'), ('viper', 'mark iii')
... ]
>>> index = pd.MultiIndex.from_tuples(tuples)
>>> values = [[12, 2], [0, 4], [10, 20],
... [1, 4], [7, 1], [16, 36]]
>>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
>>> df
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
viper mark ii 7 1
mark iii 16 36

Single label. Note this returns a DataFrame with a single index.

>>> df.loc['cobra']
max_speed shield
mark i 12 2
mark ii 0 4

Single index tuple. Note this returns a Series.

>>> df.loc[('cobra', 'mark ii')]
max_speed 0
shield 4
Name: (cobra, mark ii), dtype: int64

Single label for row and column. Similar to passing in a tuple, this
returns a Series.

>>> df.loc['cobra', 'mark i']
max_speed 12
shield 2
Name: (cobra, mark i), dtype: int64

Single tuple. Note using ``[[]]`` returns a DataFrame.

>>> df.loc[[('cobra', 'mark ii')]]
max_speed shield
cobra mark ii 0 4

Single tuple for the index with a single label for the column

>>> df.loc[('cobra', 'mark i'), 'shield']
2

Slice from index tuple to single label

>>> df.loc[('cobra', 'mark i'):'viper']
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
viper mark ii 7 1
mark iii 16 36

Slice from index tuple to index tuple

>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
viper mark ii 7 1

Raises
------
KeyError:
when any items are not found
"""

_valid_types = ("labels (MUST BE IN THE INDEX), slices of labels (BOTH "
Expand Down