Skip to content

DOC: Improved the docstring of pandas.plotting.radviz #20169

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 11, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 54 additions & 13 deletions pandas/plotting/_misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,25 +147,66 @@ def _get_marker_compat(marker):


def radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds):
"""RadViz - a multivariate data visualization algorithm
"""
Plot a multidimensional dataset in 2D.

Each Series in the DataFrame is represented as a evenly distributed
slice on a circle. Each data point is rendered in the circle according to
the value on each Series. Highly correlated `Series` in the `DataFrame`
are placed closer on the unit circle.

RadViz allow to project a N-dimensional data set into a 2D space where the
influence of each dimension can be interpreted as a balance between the
influence of all dimensions.

More info available at the `original article
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.889>`_
describing RadViz.

Parameters
----------
frame: DataFrame
class_column: str
Column name containing class names
ax: Matplotlib axis object, optional
color: list or tuple, optional
Colors to use for the different classes
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name
from matplotlib.
kwds: keywords
Options to pass to matplotlib scatter plotting method
frame : `DataFrame`
Pandas object holding the data.
class_column : str
Column name containing the name of the data point category.
ax : :class:`matplotlib.axes.Axes`, optional
A plot instance to which to add the information.
color : list[str] or tuple[str], optional
Assign a color to each category. Example: ['blue', 'green'].
colormap : str or :class:`matplotlib.colors.Colormap`, default None
Colormap to select colors from. If string, load colormap with that
name from matplotlib.
kwds : optional
Options to pass to matplotlib scatter plotting method.

Returns
-------
ax: Matplotlib axis object
axes : :class:`matplotlib.axes.Axes`

See Also
--------
pandas.plotting.andrews_curves : Plot clustering visualization

Examples
--------
.. plot::
:context: close-figs

>>> df = pd.DataFrame({
... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6,
... 6.7, 4.6],
... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2,
... 3.3, 3.6],
... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4,
... 5.7, 1.0],
... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2,
... 2.1, 0.2],
... 'Category': ['virginica', 'virginica', 'setosa',
... 'virginica', 'virginica', 'versicolor',
... 'versicolor', 'setosa', 'virginica',
... 'setosa']
... })
>>> rad_viz = pd.plotting.radviz(df, 'Category')
"""
import matplotlib.pyplot as plt
import matplotlib.patches as patches
Expand Down