Skip to content

DOC: Update the pandas.Index.isna docstring #20123

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Mar 12, 2018
50 changes: 45 additions & 5 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -2022,18 +2022,58 @@ def hasnans(self):

def isna(self):
"""
Detect missing values
Detect missing values.

Return a boolean same-sized object indicating if the values are NA.
NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get
mapped to ``True`` values.
Everything else get mapped to ``False`` values. Characters such as
empty strings `''` or :attr:`numpy.inf` are not considered NA values
(unless you set :attr:`pandas.options.mode.use_inf_as_na` `= True`).

.. versionadded:: 0.20.0

Returns
-------
a boolean array of whether my values are NA
numpy.ndarray
A boolean array of whether my values are NA

See also
See Also
--------
pandas.Index.notna : boolean inverse of isna.
pandas.Index.dropna : omit entries with missing values.
pandas.isna : top-level isna.
Series.isna : detect missing values in Series object.

Examples
--------
isnull : alias of isna
pandas.isna : top-level isna
Show which entries in a pandas.Index are NA. The result is an
array.

>>> idx = pd.Index([5.2, 6.0, np.NaN])
>>> idx
Float64Index([5.2, 6.0, nan], dtype='float64')
>>> idx.isna()
array([False, False, True], dtype=bool)

Empty strings are not considered NA values. None is considered an NA
value.

>>> idx = pd.Index(['black', '', 'red', None])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you show a datetimeindex example (with has a NaT)

>>> idx
Index(['black', '', 'red', None], dtype='object')
>>> idx.isna()
array([False, False, False, True], dtype=bool)

For datetimes, `NaT` (Not a Time) is considered as an NA value.

>>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'),
... pd.Timestamp(''), None, pd.NaT])
>>> idx
DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'],
dtype='datetime64[ns]', freq=None)
>>> idx.isna()
array([False, True, True, True], dtype=bool)
"""
return self._isnan
isnull = isna
Expand Down