Skip to content

CLN: ASV timeseries #19148

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 9, 2018
Merged

Conversation

mroeschke
Copy link
Member

Split up the some benchmarks and utilized params where available. I think to_datetime(...,cache=True) is tagged for v0.23 so that's probably why the ToDatetimeCache benchmarks don't work yet?

[  0.00%] ·· Building for existing-py_home_matt_anaconda_envs_pandas_dev_bin_python
[  0.00%] ·· Benchmarking existing-py_home_matt_anaconda_envs_pandas_dev_bin_python
[  2.38%] ··· Running timeseries.AsOf.time_asof                              ok
[  2.38%] ···· 
               ============= ========
                constructor          
               ------------- --------
                 DataFrame    25.9ms 
                   Series     13.8ms 
               ============= ========

[  4.76%] ··· Running timeseries.AsOf.time_asof_nan                          ok
[  4.76%] ···· 
               ============= ========
                constructor          
               ------------- --------
                 DataFrame    27.8ms 
                   Series     13.4ms 
               ============= ========

[  7.14%] ··· Running timeseries.AsOf.time_asof_nan_single                   ok
[  7.14%] ···· 
               ============= ========
                constructor          
               ------------- --------
                 DataFrame    7.96ms 
                   Series     6.70ms 
               ============= ========

[  9.52%] ··· Running timeseries.AsOf.time_asof_single                       ok
[  9.52%] ···· 
               ============= ========
                constructor          
               ------------- --------
                 DataFrame    7.98ms 
                   Series     225μs  
               ============= ========

[ 11.90%] ··· Running timeseries.AsOf.time_asof_single_early                 ok
[ 11.90%] ···· 
               ============= =======
                constructor         
               ------------- -------
                 DataFrame    406μs 
                   Series     168μs 
               ============= =======

[ 14.29%] ··· Running timeseries.DatetimeAccessor.time_dt_accessor        141μs
[ 16.67%] ··· Running ...DatetimeAccessor.time_dt_accessor_normalize     15.5ms
[ 19.05%] ··· Running timeseries.DatetimeIndex.time_add_timedelta            ok
[ 19.05%] ···· 
               ============ ========
                index_type          
               ------------ --------
                   dst       1.09ms 
                 repeated    6.01ms 
                 tz_aware    5.13ms 
                 tz_naive    5.09ms 
               ============ ========

[ 21.43%] ··· Running timeseries.DatetimeIndex.time_get                      ok
[ 21.43%] ···· 
               ============ ========
                index_type          
               ------------ --------
                   dst       66.7μs 
                 repeated    58.7μs 
                 tz_aware    91.8μs 
                 tz_naive    65.2μs 
               ============ ========

[ 23.81%] ··· Running timeseries.DatetimeIndex.time_normalize                ok
[ 23.81%] ···· 
               ============ ========
                index_type          
               ------------ --------
                   dst       743μs  
                 repeated    11.7ms 
                 tz_aware    52.3ms 
                 tz_naive    11.6ms 
               ============ ========

[ 26.19%] ··· Running ...atetimeIndex.time_timeseries_is_month_start         ok
[ 26.19%] ···· 
               ============ ========
                index_type          
               ------------ --------
                   dst       364μs  
                 repeated    6.08ms 
                 tz_aware    11.4ms 
                 tz_naive    6.24ms 
               ============ ========

[ 28.57%] ··· Running timeseries.DatetimeIndex.time_to_date                  ok
[ 28.57%] ···· 
               ============ ========
                index_type          
               ------------ --------
                   dst       18.1ms 
                 repeated    498ms  
                 tz_aware    1.98s  
                 tz_naive    503ms  
               ============ ========

[ 30.95%] ··· Running timeseries.DatetimeIndex.time_to_pydatetime            ok
[ 30.95%] ···· 
               ============ ========
                index_type          
               ------------ --------
                   dst       2.41ms 
                 repeated    64.7ms 
                 tz_aware    602ms  
                 tz_naive    67.2ms 
               ============ ========

[ 33.33%] ··· Running timeseries.DatetimeIndex.time_to_time                  ok
[ 33.33%] ···· 
               ============ ========
                index_type          
               ------------ --------
                   dst       19.0ms 
                 repeated    506ms  
                 tz_aware    2.00s  
                 tz_naive    509ms  
               ============ ========

[ 35.71%] ··· Running timeseries.DatetimeIndex.time_unique                   ok
[ 35.71%] ···· 
               ============ ========
                index_type          
               ------------ --------
                   dst       592μs  
                 repeated    2.21ms 
                 tz_aware    7.59ms 
                 tz_naive    8.03ms 
               ============ ========

[ 38.10%] ··· Running timeseries.Factorize.time_factorize                    ok
[ 38.10%] ···· 
               ============ ========
                    t               
               ------------ --------
                   None      27.6ms 
                Asia/Tokyo   28.8ms 
               ============ ========

[ 40.48%] ··· Running timeseries.InferFreq.time_infer_freq                   ok
[ 40.48%] ···· 
               ====== ========
                freq          
               ------ --------
                None   1.84ms 
                 D     1.84ms 
                 B     2.81ms 
               ====== ========

[ 42.86%] ··· Running timeseries.IrregularOps.time_add                    477ms
[ 45.24%] ··· Running timeseries.Iteration.time_iter                         ok
[ 45.24%] ···· 
               =========================================== =======
                                time_index                        
               ------------------------------------------- -------
                 <function date_range at 0x7f428622a050>    1.06s 
                <function period_range at 0x7f4285d5c2a8>   5.69s 
               =========================================== =======

[ 47.62%] ··· Running timeseries.Iteration.time_iter_preexit                 ok
[ 47.62%] ···· 
               =========================================== ========
                                time_index                         
               ------------------------------------------- --------
                 <function date_range at 0x7f428622a050>    23.4ms 
                <function period_range at 0x7f4285d5c2a8>   61.1ms 
               =========================================== ========

[ 50.00%] ··· Running timeseries.Lookup.time_lookup_and_cleanup          6.01ms
[ 52.38%] ··· Running timeseries.ResampleDataFrame.time_method               ok
[ 52.38%] ···· 
               ======== ========
                method          
               -------- --------
                 max     6.67ms 
                 mean    5.88ms 
                 min     6.60ms 
               ======== ========

[ 54.76%] ··· Running timeseries.ResampleDatetetime64.time_resample      7.28ms
[ 57.14%] ··· Running timeseries.ResampleSeries.time_resample                ok
[ 57.14%] ···· 
               ========== ====== ======== ========
               --                      method     
               ----------------- -----------------
                 index     freq    mean     ohlc  
               ========== ====== ======== ========
                 period    5min   31.0ms   34.2ms 
                 period     1D    25.2ms   26.4ms 
                datetime   5min   18.0ms   21.6ms 
                datetime    1D    12.2ms   13.5ms 
               ========== ====== ======== ========

[ 59.52%] ··· Running timeseries.ResetIndex.time_reest_datetimeindex         ok
[ 59.52%] ···· 
               ============ ========
                    t               
               ------------ --------
                   None      1.15ms 
                US/Eastern   1.34ms 
               ============ ========

[ 61.90%] ··· Running timeseries.SortIndex.time_get_slice                    ok
[ 61.90%] ···· 
               =========== =======
                monotonic         
               ----------- -------
                   True     322μs 
                  False     283μs 
               =========== =======

[ 64.29%] ··· Running timeseries.SortIndex.time_sort_index                   ok
[ 64.29%] ···· 
               =========== ========
                monotonic          
               ----------- --------
                   True     1.72ms 
                  False     17.8ms 
               =========== ========

[ 66.67%] ··· Running timeseries.TimeDatetimeConverter.time_convert      12.5ms
[ 69.05%] ··· Running ...s.ToDatetimeCache.time_dup_seconds_and_unit     failed
[ 69.05%] ···· 
               ======= ========
                cache          
               ------- --------
                 True   failed 
                False   failed 
               ======= ========

[ 69.05%] ····· 
                
                For parameters: True
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 377, in time_dup_seconds_and_unit
                    to_datetime(self.dup_numeric_seconds, unit='s', cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'
                
                For parameters: False
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 377, in time_dup_seconds_and_unit
                    to_datetime(self.dup_numeric_seconds, unit='s', cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'

[ 71.43%] ··· Running ...eries.ToDatetimeCache.time_dup_string_dates     failed
[ 71.43%] ···· 
               ======= ========
                cache          
               ------- --------
                 True   failed 
                False   failed 
               ======= ========

[ 71.43%] ····· 
                
                For parameters: True
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 380, in time_dup_string_dates
                    to_datetime(self.dup_string_dates, cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'
                
                For parameters: False
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 380, in time_dup_string_dates
                    to_datetime(self.dup_string_dates, cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'

[ 73.81%] ··· Running ...etimeCache.time_dup_string_dates_and_format     failed
[ 73.81%] ···· 
               ======= ========
                cache          
               ------- --------
                 True   failed 
                False   failed 
               ======= ========

[ 73.81%] ····· 
                
                For parameters: True
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 383, in time_dup_string_dates_and_format
                    to_datetime(self.dup_string_dates, format='%Y-%m-%d', cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'
                
                For parameters: False
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 383, in time_dup_string_dates_and_format
                    to_datetime(self.dup_string_dates, format='%Y-%m-%d', cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'

[ 76.19%] ··· Running ...atetimeCache.time_dup_string_tzoffset_dates     failed
[ 76.19%] ···· 
               ======= ========
                cache          
               ------- --------
                 True   failed 
                False   failed 
               ======= ========

[ 76.19%] ····· 
                
                For parameters: True
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 386, in time_dup_string_tzoffset_dates
                    to_datetime(self.dup_string_with_tz, cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'
                
                For parameters: False
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 386, in time_dup_string_tzoffset_dates
                    to_datetime(self.dup_string_with_tz, cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'

[ 78.57%] ··· Running ...oDatetimeCache.time_unique_seconds_and_unit     failed
[ 78.57%] ···· 
               ======= ========
                cache          
               ------- --------
                 True   failed 
                False   failed 
               ======= ========

[ 78.57%] ····· 
                
                For parameters: True
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 374, in time_unique_seconds_and_unit
                    to_datetime(self.unique_numeric_seconds, unit='s', cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'
                
                For parameters: False
                Traceback (most recent call last):
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 818, in <module>
                    commands[mode](args)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 795, in main_run
                    result = benchmark.do_run()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 349, in do_run
                    return self.run(*self._current_params)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 424, in run
                    samples, number = self.benchmark_timing(timer, repeat, warmup_time, number=number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 471, in benchmark_timing
                    timing = timer.timeit(number)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 202, in timeit
                    timing = self.inner(it, self.timer)
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/timeit.py", line 100, in inner
                    _func()
                  File "/home/matt/anaconda/envs/pandas_dev/lib/python2.7/site-packages/asv/benchmark.py", line 415, in <lambda>
                    func = lambda: self.func(*param)
                  File "/home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py", line 374, in time_unique_seconds_and_unit
                    to_datetime(self.unique_numeric_seconds, unit='s', cache=cache)
                TypeError: to_datetime() got an unexpected keyword argument 'cache'

[ 80.95%] ··· Running timeseries.ToDatetimeFormat.time_exact              2.02s
[ 83.33%] ··· Running timeseries.ToDatetimeFormat.time_no_exact           1.93s
[ 85.71%] ··· Running timeseries.ToDatetimeISO8601.time_iso8601          9.93ms
[ 88.10%] ··· Running ...eries.ToDatetimeISO8601.time_iso8601_format     10.2ms
[ 90.48%] ··· Running ...oDatetimeISO8601.time_iso8601_format_no_sep     9.67ms
[ 92.86%] ··· Running ...series.ToDatetimeISO8601.time_iso8601_nosep     9.84ms
[ 95.24%] ··· Running ...DatetimeISO8601.time_iso8601_tz_spaceformat      619ms
[ 97.62%] ··· Running ...ies.ToDatetimeYYYYMMDD.time_format_YYYYMMDD     15.1ms
[100.00%] ··· Running timeseries.TzLocalize.time_infer_dst               4.84ms
[100.00%] ····· /home/matt/Projects/pandas-mroeschke/asv_bench/benchmarks/timeseries.py:77: FutureWarning: the infer_dst=True keyword is deprecated, use ambiguous='infer' instead
                self.index.tz_localize('US/Eastern', infer_dst=True)

More cleaning

more cleans

more cleaning

fix error in resample

fix tzlocalize bench

lint
@jreback jreback added the Benchmark Performance (ASV) benchmarks label Jan 9, 2018
@jreback jreback added this to the 0.23.0 milestone Jan 9, 2018
@jreback jreback merged commit 7c8c1fd into pandas-dev:master Jan 9, 2018
@jreback
Copy link
Contributor

jreback commented Jan 9, 2018

thanks!

@mroeschke mroeschke deleted the asv_clean_timeseries branch January 9, 2018 17:45
maximveksler pushed a commit to maximveksler/pandas that referenced this pull request Jan 11, 2018
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Benchmark Performance (ASV) benchmarks
Projects
None yet
Development

Successfully merging this pull request may close these issues.

BENCH: put in np.random.seed on vbenches
2 participants