Skip to content

dispatch Series[datetime64] ops to DatetimeIndex #19024

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jan 4, 2018
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions doc/source/whatsnew/v0.23.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -208,6 +208,9 @@ Other API Changes
- In :func:`read_excel`, the ``comment`` argument is now exposed as a named parameter (:issue:`18735`)
- Rearranged the order of keyword arguments in :func:`read_excel()` to align with :func:`read_csv()` (:issue:`16672`)
- The options ``html.border`` and ``mode.use_inf_as_null`` were deprecated in prior versions, these will now show ``FutureWarning`` rather than a ``DeprecationWarning`` (:issue:`19003`)
- Subtracting ``NaT`` from a :class:`Series` with ``dtype='datetime64[ns]'`` returns a ``Series`` with ``dtype='timedelta64[ns]'`` instead of ``dtype='datetime64[ns]'``(:issue:`18808`)
- Operations between a :class:`Series` with dtype ``dtype='datetime64[ns]'`` and a :class:`PeriodIndex` will correctly raises ``TypeError`` (:issue:`18850`)
- Subtraction of :class:`Series` with timezone-aware ``dtype='datetime64[ns]'`` will mis-matched timezones will raise ``TypeError`` instead of ``ValueError`` (issue:`18817`) dtypewith mis-matched timezones will now raise a ``TypeError`` instead of a ``ValueError`` (:issue:`18817`)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

looks like some text got duped in the last entry


.. _whatsnew_0230.deprecations:

Expand Down
146 changes: 29 additions & 117 deletions pandas/core/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -341,10 +341,8 @@ def get_op(cls, left, right, name, na_op):
normal numpy path.
"""
is_timedelta_lhs = is_timedelta64_dtype(left)
is_datetime_lhs = (is_datetime64_dtype(left) or
is_datetime64tz_dtype(left))

if not (is_datetime_lhs or is_timedelta_lhs):
if not is_timedelta_lhs:
return _Op(left, right, name, na_op)
else:
return _TimeOp(left, right, name, na_op)
Expand All @@ -364,14 +362,8 @@ def __init__(self, left, right, name, na_op):
rvalues = self._convert_to_array(right, name=name, other=lvalues)

# left
self.is_offset_lhs = is_offsetlike(left)
self.is_timedelta_lhs = is_timedelta64_dtype(lvalues)
self.is_datetime64_lhs = is_datetime64_dtype(lvalues)
self.is_datetime64tz_lhs = is_datetime64tz_dtype(lvalues)
self.is_datetime_lhs = (self.is_datetime64_lhs or
self.is_datetime64tz_lhs)
self.is_integer_lhs = left.dtype.kind in ['i', 'u']
self.is_floating_lhs = left.dtype.kind == 'f'
assert self.is_timedelta_lhs

# right
self.is_offset_rhs = is_offsetlike(right)
Expand All @@ -387,34 +379,6 @@ def __init__(self, left, right, name, na_op):
self.lvalues, self.rvalues = self._convert_for_datetime(lvalues,
rvalues)

def _validate_datetime(self, lvalues, rvalues, name):
# assumes self.is_datetime_lhs

if (self.is_timedelta_rhs or self.is_offset_rhs):
# datetime and timedelta/DateOffset
if name not in ('__add__', '__radd__', '__sub__'):
raise TypeError("can only operate on a datetime with a rhs of "
"a timedelta/DateOffset for addition and "
"subtraction, but the operator [{name}] was "
"passed".format(name=name))

elif self.is_datetime_rhs:
# 2 datetimes
if name not in ('__sub__', '__rsub__'):
raise TypeError("can only operate on a datetimes for"
" subtraction, but the operator [{name}] was"
" passed".format(name=name))

# if tz's must be equal (same or None)
if getattr(lvalues, 'tz', None) != getattr(rvalues, 'tz', None):
raise ValueError("Incompatible tz's on datetime subtraction "
"ops")

else:
raise TypeError('cannot operate on a series without a rhs '
'of a series/ndarray of type datetime64[ns] '
'or a timedelta')

def _validate_timedelta(self, name):
# assumes self.is_timedelta_lhs

Expand All @@ -440,44 +404,8 @@ def _validate_timedelta(self, name):
'of a series/ndarray of type datetime64[ns] '
'or a timedelta')

def _validate_offset(self, name):
# assumes self.is_offset_lhs

if self.is_timedelta_rhs:
# 2 timedeltas
if name not in ('__div__', '__rdiv__', '__truediv__',
'__rtruediv__', '__add__', '__radd__', '__sub__',
'__rsub__'):
raise TypeError("can only operate on a timedeltas for addition"
", subtraction, and division, but the operator"
" [{name}] was passed".format(name=name))

elif self.is_datetime_rhs:
if name not in ('__add__', '__radd__'):
raise TypeError("can only operate on a timedelta/DateOffset "
"and a datetime for addition, but the operator"
" [{name}] was passed".format(name=name))

else:
raise TypeError('cannot operate on a series without a rhs '
'of a series/ndarray of type datetime64[ns] '
'or a timedelta')

def _validate(self, lvalues, rvalues, name):
if self.is_datetime_lhs:
return self._validate_datetime(lvalues, rvalues, name)
elif self.is_timedelta_lhs:
return self._validate_timedelta(name)
elif self.is_offset_lhs:
return self._validate_offset(name)

if ((self.is_integer_lhs or self.is_floating_lhs) and
self.is_timedelta_rhs):
self._check_timedelta_with_numeric(name)
else:
raise TypeError('cannot operate on a series without a rhs '
'of a series/ndarray of type datetime64[ns] '
'or a timedelta')
return self._validate_timedelta(name)

def _check_timedelta_with_numeric(self, name):
if name not in ('__div__', '__truediv__', '__mul__', '__rmul__'):
Expand All @@ -498,7 +426,7 @@ def _convert_to_array(self, values, name=None, other=None):
# if this is a Series that contains relevant dtype info, then use this
# instead of the inferred type; this avoids coercing Series([NaT],
# dtype='datetime64[ns]') to Series([NaT], dtype='timedelta64[ns]')
elif (isinstance(values, pd.Series) and
elif (isinstance(values, (pd.Series, ABCDatetimeIndex)) and
(is_timedelta64_dtype(values) or is_datetime64_dtype(values))):
supplied_dtype = values.dtype

Expand All @@ -513,13 +441,11 @@ def _convert_to_array(self, values, name=None, other=None):
values = np.empty(values.shape, dtype='timedelta64[ns]')
values[:] = iNaT

# a datelike
elif isinstance(values, ABCDatetimeIndex):
# TODO: why are we casting to_series in the first place?
values = values.to_series(keep_tz=True)
# datetime with tz
elif (isinstance(ovalues, datetime.datetime) and
hasattr(ovalues, 'tzinfo')):
# a datelike
pass
elif isinstance(ovalues, datetime.datetime):
# datetime scalar
values = pd.DatetimeIndex(values)
# datetime array with tz
elif is_datetimetz(values):
Expand Down Expand Up @@ -571,17 +497,10 @@ def _convert_for_datetime(self, lvalues, rvalues):
mask = isna(lvalues) | isna(rvalues)

# datetimes require views
if self.is_datetime_lhs or self.is_datetime_rhs:
if self.is_datetime_rhs:

# datetime subtraction means timedelta
if self.is_datetime_lhs and self.is_datetime_rhs:
if self.name in ('__sub__', '__rsub__'):
self.dtype = 'timedelta64[ns]'
else:
self.dtype = 'datetime64[ns]'
elif self.is_datetime64tz_lhs:
self.dtype = lvalues.dtype
elif self.is_datetime64tz_rhs:
if self.is_datetime64tz_rhs:
self.dtype = rvalues.dtype
else:
self.dtype = 'datetime64[ns]'
Expand All @@ -601,15 +520,11 @@ def _offset(lvalues, rvalues):
self.na_op = lambda x, y: getattr(x, self.name)(y)
return lvalues, rvalues

if self.is_offset_lhs:
lvalues, rvalues = _offset(lvalues, rvalues)
elif self.is_offset_rhs:
if self.is_offset_rhs:
rvalues, lvalues = _offset(rvalues, lvalues)
else:

# with tz, convert to UTC
if self.is_datetime64tz_lhs:
lvalues = lvalues.tz_convert('UTC').tz_localize(None)
if self.is_datetime64tz_rhs:
rvalues = rvalues.tz_convert('UTC').tz_localize(None)

Expand All @@ -622,8 +537,6 @@ def _offset(lvalues, rvalues):
self.dtype = 'timedelta64[ns]'

# convert Tick DateOffset to underlying delta
if self.is_offset_lhs:
lvalues = to_timedelta(lvalues, box=False)
if self.is_offset_rhs:
rvalues = to_timedelta(rvalues, box=False)

Expand All @@ -634,7 +547,7 @@ def _offset(lvalues, rvalues):
# time delta division -> unit less
# integer gets converted to timedelta in np < 1.6
if ((self.is_timedelta_lhs and self.is_timedelta_rhs) and
not self.is_integer_rhs and not self.is_integer_lhs and
not self.is_integer_rhs and
self.name in ('__div__', '__rdiv__',
'__truediv__', '__rtruediv__',
'__floordiv__', '__rfloordiv__')):
Expand Down Expand Up @@ -750,10 +663,16 @@ def wrapper(left, right, name=name, na_op=na_op):
return NotImplemented

left, right = _align_method_SERIES(left, right)
if is_datetime64_dtype(left) or is_datetime64tz_dtype(left):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

and until / unless you want to limit / remove _TimeOp (which is actually ok with me). then this doesn't belong here as I have commented before.

You are welcome to put it in _TimeOp for now or rip out TimeOp.

result = op(pd.DatetimeIndex(left), right)
res_name = _get_series_op_result_name(left, right)
result.name = res_name # needs to be overriden if None
return construct_result(left, result,
index=left.index, name=res_name,
dtype=result.dtype)

converted = _Op.get_op(left, right, name, na_op)

left, right = converted.left, converted.right
lvalues, rvalues = converted.lvalues, converted.rvalues
dtype = converted.dtype
wrap_results = converted.wrap_results
Expand All @@ -775,6 +694,7 @@ def wrapper(left, right, name=name, na_op=na_op):
res_name = left.name

result = wrap_results(safe_na_op(lvalues, rvalues))
res_name = _get_series_op_result_name(left, right)
return construct_result(
left,
result,
Expand All @@ -786,6 +706,15 @@ def wrapper(left, right, name=name, na_op=na_op):
return wrapper


def _get_series_op_result_name(left, right):
# `left` is always a pd.Series
if isinstance(right, (ABCSeries, pd.Index)):
name = _maybe_match_name(left, right)
else:
name = left.name
return name


def _comp_method_OBJECT_ARRAY(op, x, y):
if isinstance(y, list):
y = construct_1d_object_array_from_listlike(y)
Expand Down Expand Up @@ -1388,23 +1317,6 @@ def f(self, other):

def _arith_method_PANEL(op, name, str_rep=None, fill_zeros=None,
default_axis=None, **eval_kwargs):
# copied from Series na_op above, but without unnecessary branch for
# non-scalar
def na_op(x, y):
import pandas.core.computation.expressions as expressions

try:
result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
except TypeError:

# TODO: might need to find_common_type here?
result = np.empty(len(x), dtype=x.dtype)
mask = notna(x)
result[mask] = op(x[mask], y)
result, changed = maybe_upcast_putmask(result, ~mask, np.nan)

result = missing.fill_zeros(result, x, y, name, fill_zeros)
return result

# work only for scalars
def f(self, other):
Expand Down
31 changes: 25 additions & 6 deletions pandas/tests/series/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -960,6 +960,13 @@ def test_timedelta64_ops_nat(self):
assert_series_equal(timedelta_series / nan,
nat_series_dtype_timedelta)

def test_td64_sub_NaT(self):
# GH#18808
ser = Series([NaT, Timedelta('1s')])
res = ser - NaT
expected = Series([NaT, NaT], dtype='timedelta64[ns]')
tm.assert_series_equal(res, expected)

@pytest.mark.parametrize('scalar_td', [timedelta(minutes=5, seconds=4),
Timedelta(minutes=5, seconds=4),
Timedelta('5m4s').to_timedelta64()])
Expand Down Expand Up @@ -1076,7 +1083,7 @@ def run_ops(ops, get_ser, test_ser):
# defined
for op_str in ops:
op = getattr(get_ser, op_str, None)
with tm.assert_raises_regex(TypeError, 'operate'):
with tm.assert_raises_regex(TypeError, 'operate|cannot'):
op(test_ser)

# ## timedelta64 ###
Expand Down Expand Up @@ -1253,20 +1260,31 @@ def test_datetime_series_with_DateOffset(self):
s + op(5)
op(5) + s

def test_dt64_sub_NaT(self):
# GH#18808
dti = pd.DatetimeIndex([pd.NaT, pd.Timestamp('19900315')])
ser = pd.Series(dti)
res = ser - pd.NaT
expected = pd.Series([pd.NaT, pd.NaT], dtype='timedelta64[ns]')
tm.assert_series_equal(res, expected)

dti_tz = dti.tz_localize('Asia/Tokyo')
ser_tz = pd.Series(dti_tz)
res = ser_tz - pd.NaT
expected = pd.Series([pd.NaT, pd.NaT], dtype='timedelta64[ns]')
tm.assert_series_equal(res, expected)

def test_datetime64_ops_nat(self):
# GH 11349
datetime_series = Series([NaT, Timestamp('19900315')])
nat_series_dtype_timestamp = Series([NaT, NaT], dtype='datetime64[ns]')
single_nat_dtype_datetime = Series([NaT], dtype='datetime64[ns]')

# subtraction
assert_series_equal(datetime_series - NaT, nat_series_dtype_timestamp)
assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp)
with pytest.raises(TypeError):
-single_nat_dtype_datetime + datetime_series

assert_series_equal(nat_series_dtype_timestamp - NaT,
nat_series_dtype_timestamp)
assert_series_equal(-NaT + nat_series_dtype_timestamp,
nat_series_dtype_timestamp)
with pytest.raises(TypeError):
Expand Down Expand Up @@ -2036,8 +2054,9 @@ def test_datetime64_with_index(self):
result = s - s.index
assert_series_equal(result, expected)

result = s - s.index.to_period()
assert_series_equal(result, expected)
with pytest.raises(TypeError):
# GH#18850
result = s - s.index.to_period()

df = DataFrame(np.random.randn(5, 2),
index=date_range('20130101', periods=5))
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/series/test_timeseries.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ def test_shift(self):
# incompat tz
s2 = Series(date_range('2000-01-01 09:00:00', periods=5,
tz='CET'), name='foo')
pytest.raises(ValueError, lambda: s - s2)
pytest.raises(TypeError, lambda: s - s2)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is this in the whatsnew notes API changed section?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes


def test_shift2(self):
ts = Series(np.random.randn(5),
Expand Down