Skip to content

CLN: ASV io benchmarks #18906

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Dec 23, 2017
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 37 additions & 0 deletions asv_bench/benchmarks/io/excel.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
import numpy as np
from pandas import DataFrame, date_range, ExcelWriter, read_excel
from pandas.compat import BytesIO
import pandas.util.testing as tm

from ..pandas_vb_common import BaseIO, setup # noqa


class Excel(object):

goal_time = 0.2
params = ['openpyxl', 'xlsxwriter', 'xlwt']
param_names = ['engine']

def setup(self, engine):
N = 2000
C = 5
self.df = DataFrame(np.random.randn(N, C),
columns=['float{}'.format(i) for i in range(C)],
index=date_range('20000101', periods=N, freq='H'))
self.df['object'] = tm.makeStringIndex(N)
self.bio_read = BytesIO()
self.writer_read = ExcelWriter(self.bio_read, engine=engine)
self.df.to_excel(self.writer_read, sheet_name='Sheet1')
self.writer_read.save()
self.bio_read.seek(0)

self.bio_write = BytesIO()
self.bio_write.seek(0)
self.writer_write = ExcelWriter(self.bio_write, engine=engine)

def time_read_excel(self, engine):
read_excel(self.bio_read)

def time_write_excel(self, engine):
self.df.to_excel(self.writer_write, sheet_name='Sheet1')
self.writer_write.save()
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
import numpy as np
from pandas import DataFrame, Panel, date_range, HDFStore
from pandas import DataFrame, Panel, date_range, HDFStore, read_hdf
import pandas.util.testing as tm

from .pandas_vb_common import BaseIO, setup # noqa
from ..pandas_vb_common import BaseIO, setup # noqa


class HDF5(BaseIO):
class HDFStoreDataFrame(BaseIO):

goal_time = 0.2

Expand Down Expand Up @@ -34,9 +34,9 @@ def setup(self):
self.df_dc = DataFrame(np.random.randn(N, 10),
columns=['C%03d' % i for i in range(10)])

self.f = '__test__.h5'
self.fname = '__test__.h5'

self.store = HDFStore(self.f)
self.store = HDFStore(self.fname)
self.store.put('fixed', self.df)
self.store.put('fixed_mixed', self.df_mixed)
self.store.append('table', self.df2)
Expand All @@ -46,7 +46,7 @@ def setup(self):

def teardown(self):
self.store.close()
self.remove(self.f)
self.remove(self.fname)

def time_read_store(self):
self.store.get('fixed')
Expand Down Expand Up @@ -99,25 +99,48 @@ def time_store_info(self):
self.store.info()


class HDF5Panel(BaseIO):
class HDFStorePanel(BaseIO):

goal_time = 0.2

def setup(self):
self.f = '__test__.h5'
self.fname = '__test__.h5'
self.p = Panel(np.random.randn(20, 1000, 25),
items=['Item%03d' % i for i in range(20)],
major_axis=date_range('1/1/2000', periods=1000),
minor_axis=['E%03d' % i for i in range(25)])
self.store = HDFStore(self.f)
self.store = HDFStore(self.fname)
self.store.append('p1', self.p)

def teardown(self):
self.store.close()
self.remove(self.f)
self.remove(self.fname)

def time_read_store_table_panel(self):
self.store.select('p1')

def time_write_store_table_panel(self):
self.store.append('p2', self.p)


class HDF(BaseIO):

goal_time = 0.2
params = ['table', 'fixed']
param_names = ['format']

def setup(self, format):
self.fname = '__test__.h5'
N = 100000
C = 5
self.df = DataFrame(np.random.randn(N, C),
columns=['float{}'.format(i) for i in range(C)],
index=date_range('20000101', periods=N, freq='H'))
self.df['object'] = tm.makeStringIndex(N)
self.df.to_hdf(self.fname, 'df', format=format)

def time_read_hdf(self, format):
read_hdf(self.fname, 'df')

def time_write_hdf(self, format):
self.df.to_hdf(self.fname, 'df', format=format)
26 changes: 26 additions & 0 deletions asv_bench/benchmarks/io/msgpack.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
import numpy as np
from pandas import DataFrame, date_range, read_msgpack
import pandas.util.testing as tm

from ..pandas_vb_common import BaseIO, setup # noqa


class MSGPack(BaseIO):

goal_time = 0.2

def setup(self):
self.fname = '__test__.msg'
N = 100000
C = 5
self.df = DataFrame(np.random.randn(N, C),
columns=['float{}'.format(i) for i in range(C)],
index=date_range('20000101', periods=N, freq='H'))
self.df['object'] = tm.makeStringIndex(N)
self.df.to_msgpack(self.fname)

def time_read_msgpack(self):
read_msgpack(self.fname)

def time_write_msgpack(self):
self.df.to_msgpack(self.fname)
26 changes: 26 additions & 0 deletions asv_bench/benchmarks/io/pickle.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
import numpy as np
from pandas import DataFrame, date_range, read_pickle
import pandas.util.testing as tm

from ..pandas_vb_common import BaseIO, setup # noqa


class Pickle(BaseIO):

goal_time = 0.2

def setup(self):
self.fname = '__test__.pkl'
N = 100000
C = 5
self.df = DataFrame(np.random.randn(N, C),
columns=['float{}'.format(i) for i in range(C)],
index=date_range('20000101', periods=N, freq='H'))
self.df['object'] = tm.makeStringIndex(N)
self.df.to_pickle(self.fname)

def time_read_pickle(self):
read_pickle(self.fname)

def time_write_pickle(self):
self.df.to_pickle(self.fname)
21 changes: 21 additions & 0 deletions asv_bench/benchmarks/io/sas.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
import os

from pandas import read_sas


class SAS(object):

goal_time = 0.2
params = ['sas7bdat', 'xport']
param_names = ['format']

def setup(self, format):
# Read files that are located in 'pandas/io/tests/sas/data'
files = {'sas7bdat': 'test1.sas7bdat', 'xport': 'paxraw_d_short.xpt'}
file = files[format]
paths = [os.path.dirname(__file__), '..', '..', '..', 'pandas',
'tests', 'io', 'sas', 'data', file]
self.f = os.path.join(*paths)

def time_read_msgpack(self, format):
read_sas(self.f, format=format)
84 changes: 84 additions & 0 deletions asv_bench/benchmarks/io/sql.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
import sqlite3

import numpy as np
import pandas.util.testing as tm
from pandas import DataFrame, date_range, read_sql_query, read_sql_table
from sqlalchemy import create_engine

from ..pandas_vb_common import setup # noqa


class SQL(object):

goal_time = 0.2
params = (['sqlalchemy', 'sqlite'],
['float', 'float_with_nan', 'string', 'bool', 'int', 'datetime'])
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would personally keep this benchmark splitted into two classes where one has those params (for testing types) and the other not. As now this creates a lot of extra benchmarks that are not needed

param_names = ['connection', 'dtype']

def setup(self, connection, dtype):
N = 10000
con = {'sqlalchemy': create_engine('sqlite:///:memory:'),
'sqlite': sqlite3.connect(':memory:')}
self.table_name = 'test_type'
self.query_all = 'SELECT * FROM {}'.format(self.table_name)
self.query_col = 'SELECT {} FROM {}'.format(dtype, self.table_name)
self.con = con[connection]
self.df = DataFrame({'float': np.random.randn(N),
'float_with_nan': np.random.randn(N),
'string': ['foo'] * N,
'bool': [True] * N,
'int': np.random.randint(0, N, size=N),
'datetime': date_range('2000-01-01',
periods=N,
freq='s')},
index=tm.makeStringIndex(N))
self.df.loc[1000:3000, 'float_with_nan'] = np.nan
self.df['datetime_string'] = self.df['datetime'].astype(str)
self.df.to_sql(self.table_name, self.con, if_exists='replace')

def time_to_sql_dataframe_full(self, connection, dtype):
self.df.to_sql('test1', self.con, if_exists='replace')

def time_to_sql_dataframe_colums(self, connection, dtype):
self.df[[dtype]].to_sql('test1', self.con, if_exists='replace')

def time_read_sql_query_select_all(self, connection, dtype):
read_sql_query(self.query_all, self.con)

def time_read_sql_query_select_column(self, connection, dtype):
read_sql_query(self.query_all, self.con)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

query_col ?



class ReadSQLTable(object):

goal_time = 0.2

params = ['float', 'float_with_nan', 'string', 'bool', 'int', 'datetime']
param_names = ['dtype']

def setup(self, dtype):
N = 10000
self.table_name = 'test'
self.con = create_engine('sqlite:///:memory:')
self.df = DataFrame({'float': np.random.randn(N),
'float_with_nan': np.random.randn(N),
'string': ['foo'] * N,
'bool': [True] * N,
'int': np.random.randint(0, N, size=N),
'datetime': date_range('2000-01-01',
periods=N,
freq='s')},
index=tm.makeStringIndex(N))
self.df.loc[1000:3000, 'float_with_nan'] = np.nan
self.df['datetime_string'] = self.df['datetime'].astype(str)
self.df.to_sql(self.table_name, self.con, if_exists='replace')

def time_read_sql_table_all(self, dtype):
read_sql_table(self.table_name, self.con)

def time_read_sql_table_column(self, dtype):
read_sql_table(self.table_name, self.con, columns=[dtype])

def time_read_sql_table_parse_dates(self, dtype):
read_sql_table(self.table_name, self.con, columns=['datetime_string'],
parse_dates=['datetime_string'])
37 changes: 37 additions & 0 deletions asv_bench/benchmarks/io/stata.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
import numpy as np
from pandas import DataFrame, date_range, read_stata
import pandas.util.testing as tm

from ..pandas_vb_common import BaseIO, setup # noqa


class Stata(BaseIO):

goal_time = 0.2
params = ['tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty']
param_names = ['convert_dates']

def setup(self, convert_dates):
self.fname = '__test__.dta'
N = 100000
C = 5
self.df = DataFrame(np.random.randn(N, C),
columns=['float{}'.format(i) for i in range(C)],
index=date_range('20000101', periods=N, freq='H'))
self.df['object'] = tm.makeStringIndex(N)
self.df['int8_'] = np.random.randint(np.iinfo(np.int8).min,
np.iinfo(np.int8).max - 27, N)
self.df['int16_'] = np.random.randint(np.iinfo(np.int16).min,
np.iinfo(np.int16).max - 27, N)
self.df['int32_'] = np.random.randint(np.iinfo(np.int32).min,
np.iinfo(np.int32).max - 27, N)
self.df['float32_'] = np.array(np.random.randn(N),
dtype=np.float32)
self.convert_dates = {'index': convert_dates}
self.df.to_stata(self.fname, self.convert_dates)

def time_read_stata(self, convert_dates):
read_stata(self.fname)

def time_write_stata(self, convert_dates):
self.df.to_stata(self.fname, self.convert_dates)
Loading