-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
CLN: ASV inference benchmark #18759
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
CLN: ASV inference benchmark #18759
Changes from 2 commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,77 +1,84 @@ | ||
from .pandas_vb_common import * | ||
import pandas as pd | ||
import numpy as np | ||
import pandas.util.testing as tm | ||
try: | ||
import pandas._libs.lib as lib | ||
except ImportError: | ||
import pandas.lib as lib | ||
from pandas import DataFrame, Series, to_numeric | ||
|
||
from .pandas_vb_common import numeric_dtypes, setup # noqa | ||
|
||
class DtypeInfer(object): | ||
goal_time = 0.2 | ||
|
||
class NumericInferOps(object): | ||
# from GH 7332 | ||
goal_time = 0.2 | ||
params = numeric_dtypes | ||
param_names = ['dtype'] | ||
|
||
def setup(self, dtype): | ||
N = 5 * 10**5 | ||
self.df = DataFrame({'A': np.arange(N).astype(dtype), | ||
'B': np.arange(N).astype(dtype)}) | ||
|
||
def time_add(self, dtype): | ||
self.df['A'] + self.df['B'] | ||
|
||
def time_subtract(self, dtype): | ||
self.df['A'] - self.df['B'] | ||
|
||
def setup(self): | ||
self.N = 500000 | ||
self.df_int64 = DataFrame(dict(A=np.arange(self.N, dtype='int64'), | ||
B=np.arange(self.N, dtype='int64'))) | ||
self.df_int32 = DataFrame(dict(A=np.arange(self.N, dtype='int32'), | ||
B=np.arange(self.N, dtype='int32'))) | ||
self.df_uint32 = DataFrame(dict(A=np.arange(self.N, dtype='uint32'), | ||
B=np.arange(self.N, dtype='uint32'))) | ||
self.df_float64 = DataFrame(dict(A=np.arange(self.N, dtype='float64'), | ||
B=np.arange(self.N, dtype='float64'))) | ||
self.df_float32 = DataFrame(dict(A=np.arange(self.N, dtype='float32'), | ||
B=np.arange(self.N, dtype='float32'))) | ||
self.df_datetime64 = DataFrame(dict(A=pd.to_datetime(np.arange(self.N, dtype='int64'), unit='ms'), | ||
B=pd.to_datetime(np.arange(self.N, dtype='int64'), unit='ms'))) | ||
self.df_timedelta64 = DataFrame(dict(A=(self.df_datetime64['A'] - self.df_datetime64['B']), | ||
B=self.df_datetime64['B'])) | ||
def time_multiply(self, dtype): | ||
self.df['A'] * self.df['B'] | ||
|
||
def time_int64(self): | ||
(self.df_int64['A'] + self.df_int64['B']) | ||
def time_divide(self, dtype): | ||
self.df['A'] / self.df['B'] | ||
|
||
def time_int32(self): | ||
(self.df_int32['A'] + self.df_int32['B']) | ||
def time_modulo(self, dtype): | ||
self.df['A'] % self.df['B'] | ||
|
||
def time_uint32(self): | ||
(self.df_uint32['A'] + self.df_uint32['B']) | ||
|
||
def time_float64(self): | ||
(self.df_float64['A'] + self.df_float64['B']) | ||
class DateInferOps(object): | ||
# from GH 7332 | ||
goal_time = 0.2 | ||
|
||
def setup_cache(self): | ||
N = 5 * 10**5 | ||
df = DataFrame({'datetime64': np.arange(N).astype('datetime64[ms]')}) | ||
df['timedelta'] = df['datetime64'] - df['datetime64'] | ||
return df | ||
|
||
def time_float32(self): | ||
(self.df_float32['A'] + self.df_float32['B']) | ||
def time_subtract_datetimes(self, df): | ||
df['datetime64'] - df['datetime64'] | ||
|
||
def time_datetime64(self): | ||
(self.df_datetime64['A'] - self.df_datetime64['B']) | ||
def time_timedelta_plus_datetime(self, df): | ||
df['timedelta'] + df['datetime64'] | ||
|
||
def time_timedelta64_1(self): | ||
(self.df_timedelta64['A'] + self.df_timedelta64['B']) | ||
def time_add_timedeltas(self, df): | ||
df['timedelta'] + df['timedelta'] | ||
|
||
def time_timedelta64_2(self): | ||
(self.df_timedelta64['A'] + self.df_timedelta64['A']) | ||
|
||
class ToNumeric(object): | ||
|
||
class to_numeric(object): | ||
goal_time = 0.2 | ||
params = ['ignore', 'coerce'] | ||
param_names = ['errors'] | ||
|
||
def setup(self): | ||
self.n = 10000 | ||
self.float = Series(np.random.randn(self.n * 100)) | ||
def setup(self, errors): | ||
N = 10000 | ||
self.float = Series(np.random.randn(N)) | ||
self.numstr = self.float.astype('str') | ||
self.str = Series(tm.makeStringIndex(self.n)) | ||
self.str = Series(tm.makeStringIndex(N)) | ||
|
||
def time_from_float(self): | ||
pd.to_numeric(self.float) | ||
def time_from_float(self, errors): | ||
to_numeric(self.float, errors=errors) | ||
|
||
def time_from_numeric_str(self): | ||
pd.to_numeric(self.numstr) | ||
def time_from_numeric_str(self, errors): | ||
to_numeric(self.numstr, errors=errors) | ||
|
||
def time_from_str_ignore(self): | ||
pd.to_numeric(self.str, errors='ignore') | ||
def time_from_str(self, errors): | ||
to_numeric(self.str, errors=errors) | ||
|
||
def time_from_str_coerce(self): | ||
pd.to_numeric(self.str, errors='coerce') | ||
|
||
|
||
class to_numeric_downcast(object): | ||
class ToNumericDowncast(object): | ||
|
||
param_names = ['dtype', 'downcast'] | ||
params = [['string-float', 'string-int', 'string-nint', 'datetime64', | ||
|
@@ -81,37 +88,30 @@ class to_numeric_downcast(object): | |
N = 500000 | ||
N2 = int(N / 2) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this was for a good reason, you can't use floats to multiply lists (I find it a bit strange that this didn't fail for you) |
||
|
||
data_dict = { | ||
'string-int': (['1'] * N2) + ([2] * N2), | ||
'string-nint': (['-1'] * N2) + ([2] * N2), | ||
'datetime64': np.repeat(np.array(['1970-01-01', '1970-01-02'], | ||
dtype='datetime64[D]'), N), | ||
'string-float': (['1.1'] * N2) + ([2] * N2), | ||
'int-list': ([1] * N2) + ([2] * N2), | ||
'int32': np.repeat(np.int32(1), N) | ||
} | ||
data_dict = {'string-int': ['1'] * N2 + [2] * N2, | ||
'string-nint': ['-1'] * N2 + [2] * N2, | ||
'datetime64': np.repeat(np.array(['1970-01-01', '1970-01-02'], | ||
dtype='datetime64[D]'), N), | ||
'string-float': ['1.1'] * N2 + [2] * N2, | ||
'int-list': [1] * N2 + [2] * N2, | ||
'int32': np.repeat(np.int32(1), N)} | ||
|
||
def setup(self, dtype, downcast): | ||
self.data = self.data_dict[dtype] | ||
|
||
def time_downcast(self, dtype, downcast): | ||
pd.to_numeric(self.data, downcast=downcast) | ||
to_numeric(self.data, downcast=downcast) | ||
|
||
|
||
class MaybeConvertNumeric(object): | ||
|
||
def setup(self): | ||
n = 1000000 | ||
arr = np.repeat([2**63], n) | ||
arr = arr + np.arange(n).astype('uint64') | ||
arr = np.array([arr[i] if i%2 == 0 else | ||
str(arr[i]) for i in range(n)], | ||
dtype=object) | ||
|
||
arr[-1] = -1 | ||
self.data = arr | ||
self.na_values = set() | ||
|
||
def time_convert(self): | ||
lib.maybe_convert_numeric(self.data, self.na_values, | ||
coerce_numeric=False) | ||
def setup_cache(self): | ||
N = 10**6 | ||
arr = np.repeat([2**63], N) + np.arange(N).astype('uint64') | ||
data = arr.astype(object) | ||
data[1::2] = arr[1::2].astype(str) | ||
data[-1] = -1 | ||
return data | ||
|
||
def time_convert(self, data): | ||
lib.maybe_convert_numeric(data, set(), coerce_numeric=False) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I would keep this in
pandas_vb_common
, you can just import lib from there (as this can then be reused in multiple files)