-
-
Notifications
You must be signed in to change notification settings - Fork 18.5k
Split test_categorical into subpackage (#18497) #18508
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
f8d59b8
Split test_categorical into subpackage (#18497)
WillAyd 323cde9
First round of comments (will squash later)
WillAyd 80c829e
Reorganized categorical tests
WillAyd 5e4d2d8
Added lost tests, renamed funcs
WillAyd 041b710
Final refactor of categorical tests
WillAyd afe014b
Parametrized test_mode, cleaned up other funcs
WillAyd 5e9234a
Rebase to account for c3c04e2
WillAyd File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
Empty file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
from pandas import Categorical | ||
|
||
|
||
class TestCategorical(object): | ||
|
||
def setup_method(self, method): | ||
self.factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], | ||
ordered=True) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,320 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
import pytest | ||
import sys | ||
|
||
import numpy as np | ||
|
||
import pandas.util.testing as tm | ||
from pandas import Categorical, Index, Series | ||
|
||
from pandas.compat import PYPY | ||
|
||
|
||
class TestCategoricalAnalytics(object): | ||
|
||
def test_min_max(self): | ||
|
||
# unordered cats have no min/max | ||
cat = Categorical(["a", "b", "c", "d"], ordered=False) | ||
pytest.raises(TypeError, lambda: cat.min()) | ||
pytest.raises(TypeError, lambda: cat.max()) | ||
|
||
cat = Categorical(["a", "b", "c", "d"], ordered=True) | ||
_min = cat.min() | ||
_max = cat.max() | ||
assert _min == "a" | ||
assert _max == "d" | ||
|
||
cat = Categorical(["a", "b", "c", "d"], | ||
categories=['d', 'c', 'b', 'a'], ordered=True) | ||
_min = cat.min() | ||
_max = cat.max() | ||
assert _min == "d" | ||
assert _max == "a" | ||
|
||
cat = Categorical([np.nan, "b", "c", np.nan], | ||
categories=['d', 'c', 'b', 'a'], ordered=True) | ||
_min = cat.min() | ||
_max = cat.max() | ||
assert np.isnan(_min) | ||
assert _max == "b" | ||
|
||
_min = cat.min(numeric_only=True) | ||
assert _min == "c" | ||
_max = cat.max(numeric_only=True) | ||
assert _max == "b" | ||
|
||
cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], | ||
ordered=True) | ||
_min = cat.min() | ||
_max = cat.max() | ||
assert np.isnan(_min) | ||
assert _max == 1 | ||
|
||
_min = cat.min(numeric_only=True) | ||
assert _min == 2 | ||
_max = cat.max(numeric_only=True) | ||
assert _max == 1 | ||
|
||
@pytest.mark.parametrize("values,categories,exp_mode", [ | ||
([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]), | ||
([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]), | ||
([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]), | ||
([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]), | ||
([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]), | ||
([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4])]) | ||
def test_mode(self, values, categories, exp_mode): | ||
s = Categorical(values, categories=categories, ordered=True) | ||
res = s.mode() | ||
exp = Categorical(exp_mode, categories=categories, ordered=True) | ||
tm.assert_categorical_equal(res, exp) | ||
|
||
def test_searchsorted(self): | ||
# https://github.com/pandas-dev/pandas/issues/8420 | ||
# https://github.com/pandas-dev/pandas/issues/14522 | ||
|
||
c1 = Categorical(['cheese', 'milk', 'apple', 'bread', 'bread'], | ||
categories=['cheese', 'milk', 'apple', 'bread'], | ||
ordered=True) | ||
s1 = Series(c1) | ||
c2 = Categorical(['cheese', 'milk', 'apple', 'bread', 'bread'], | ||
categories=['cheese', 'milk', 'apple', 'bread'], | ||
ordered=False) | ||
s2 = Series(c2) | ||
|
||
# Searching for single item argument, side='left' (default) | ||
res_cat = c1.searchsorted('apple') | ||
res_ser = s1.searchsorted('apple') | ||
exp = np.array([2], dtype=np.intp) | ||
tm.assert_numpy_array_equal(res_cat, exp) | ||
tm.assert_numpy_array_equal(res_ser, exp) | ||
|
||
# Searching for single item array, side='left' (default) | ||
res_cat = c1.searchsorted(['bread']) | ||
res_ser = s1.searchsorted(['bread']) | ||
exp = np.array([3], dtype=np.intp) | ||
tm.assert_numpy_array_equal(res_cat, exp) | ||
tm.assert_numpy_array_equal(res_ser, exp) | ||
|
||
# Searching for several items array, side='right' | ||
res_cat = c1.searchsorted(['apple', 'bread'], side='right') | ||
res_ser = s1.searchsorted(['apple', 'bread'], side='right') | ||
exp = np.array([3, 5], dtype=np.intp) | ||
tm.assert_numpy_array_equal(res_cat, exp) | ||
tm.assert_numpy_array_equal(res_ser, exp) | ||
|
||
# Searching for a single value that is not from the Categorical | ||
pytest.raises(ValueError, lambda: c1.searchsorted('cucumber')) | ||
pytest.raises(ValueError, lambda: s1.searchsorted('cucumber')) | ||
|
||
# Searching for multiple values one of each is not from the Categorical | ||
pytest.raises(ValueError, | ||
lambda: c1.searchsorted(['bread', 'cucumber'])) | ||
pytest.raises(ValueError, | ||
lambda: s1.searchsorted(['bread', 'cucumber'])) | ||
|
||
# searchsorted call for unordered Categorical | ||
pytest.raises(ValueError, lambda: c2.searchsorted('apple')) | ||
pytest.raises(ValueError, lambda: s2.searchsorted('apple')) | ||
|
||
with tm.assert_produces_warning(FutureWarning): | ||
res = c1.searchsorted(v=['bread']) | ||
exp = np.array([3], dtype=np.intp) | ||
tm.assert_numpy_array_equal(res, exp) | ||
|
||
def test_unique(self): | ||
# categories are reordered based on value when ordered=False | ||
cat = Categorical(["a", "b"]) | ||
exp = Index(["a", "b"]) | ||
res = cat.unique() | ||
tm.assert_index_equal(res.categories, exp) | ||
tm.assert_categorical_equal(res, cat) | ||
|
||
cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) | ||
res = cat.unique() | ||
tm.assert_index_equal(res.categories, exp) | ||
tm.assert_categorical_equal(res, Categorical(exp)) | ||
|
||
cat = Categorical(["c", "a", "b", "a", "a"], | ||
categories=["a", "b", "c"]) | ||
exp = Index(["c", "a", "b"]) | ||
res = cat.unique() | ||
tm.assert_index_equal(res.categories, exp) | ||
exp_cat = Categorical(exp, categories=['c', 'a', 'b']) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
# nan must be removed | ||
cat = Categorical(["b", np.nan, "b", np.nan, "a"], | ||
categories=["a", "b", "c"]) | ||
res = cat.unique() | ||
exp = Index(["b", "a"]) | ||
tm.assert_index_equal(res.categories, exp) | ||
exp_cat = Categorical(["b", np.nan, "a"], categories=["b", "a"]) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
def test_unique_ordered(self): | ||
# keep categories order when ordered=True | ||
cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) | ||
res = cat.unique() | ||
exp_cat = Categorical(['b', 'a'], categories=['a', 'b'], ordered=True) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], | ||
ordered=True) | ||
res = cat.unique() | ||
exp_cat = Categorical(['c', 'b', 'a'], categories=['a', 'b', 'c'], | ||
ordered=True) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], | ||
ordered=True) | ||
res = cat.unique() | ||
exp_cat = Categorical(['b', 'a'], categories=['a', 'b'], ordered=True) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], | ||
ordered=True) | ||
res = cat.unique() | ||
exp_cat = Categorical(['b', np.nan, 'a'], categories=['a', 'b'], | ||
ordered=True) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
def test_unique_index_series(self): | ||
c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1]) | ||
# Categorical.unique sorts categories by appearance order | ||
# if ordered=False | ||
exp = Categorical([3, 1, 2], categories=[3, 1, 2]) | ||
tm.assert_categorical_equal(c.unique(), exp) | ||
|
||
tm.assert_index_equal(Index(c).unique(), Index(exp)) | ||
tm.assert_categorical_equal(Series(c).unique(), exp) | ||
|
||
c = Categorical([1, 1, 2, 2], categories=[3, 2, 1]) | ||
exp = Categorical([1, 2], categories=[1, 2]) | ||
tm.assert_categorical_equal(c.unique(), exp) | ||
tm.assert_index_equal(Index(c).unique(), Index(exp)) | ||
tm.assert_categorical_equal(Series(c).unique(), exp) | ||
|
||
c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1], ordered=True) | ||
# Categorical.unique keeps categories order if ordered=True | ||
exp = Categorical([3, 1, 2], categories=[3, 2, 1], ordered=True) | ||
tm.assert_categorical_equal(c.unique(), exp) | ||
|
||
tm.assert_index_equal(Index(c).unique(), Index(exp)) | ||
tm.assert_categorical_equal(Series(c).unique(), exp) | ||
|
||
def test_shift(self): | ||
# GH 9416 | ||
cat = Categorical(['a', 'b', 'c', 'd', 'a']) | ||
|
||
# shift forward | ||
sp1 = cat.shift(1) | ||
xp1 = Categorical([np.nan, 'a', 'b', 'c', 'd']) | ||
tm.assert_categorical_equal(sp1, xp1) | ||
tm.assert_categorical_equal(cat[:-1], sp1[1:]) | ||
|
||
# shift back | ||
sn2 = cat.shift(-2) | ||
xp2 = Categorical(['c', 'd', 'a', np.nan, np.nan], | ||
categories=['a', 'b', 'c', 'd']) | ||
tm.assert_categorical_equal(sn2, xp2) | ||
tm.assert_categorical_equal(cat[2:], sn2[:-2]) | ||
|
||
# shift by zero | ||
tm.assert_categorical_equal(cat, cat.shift(0)) | ||
|
||
def test_nbytes(self): | ||
cat = Categorical([1, 2, 3]) | ||
exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories | ||
assert cat.nbytes == exp | ||
|
||
def test_memory_usage(self): | ||
cat = Categorical([1, 2, 3]) | ||
|
||
# .categories is an index, so we include the hashtable | ||
assert 0 < cat.nbytes <= cat.memory_usage() | ||
assert 0 < cat.nbytes <= cat.memory_usage(deep=True) | ||
|
||
cat = Categorical(['foo', 'foo', 'bar']) | ||
assert cat.memory_usage(deep=True) > cat.nbytes | ||
|
||
if not PYPY: | ||
# sys.getsizeof will call the .memory_usage with | ||
# deep=True, and add on some GC overhead | ||
diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) | ||
assert abs(diff) < 100 | ||
|
||
def test_map(self): | ||
c = Categorical(list('ABABC'), categories=list('CBA'), ordered=True) | ||
result = c.map(lambda x: x.lower()) | ||
exp = Categorical(list('ababc'), categories=list('cba'), ordered=True) | ||
tm.assert_categorical_equal(result, exp) | ||
|
||
c = Categorical(list('ABABC'), categories=list('ABC'), ordered=False) | ||
result = c.map(lambda x: x.lower()) | ||
exp = Categorical(list('ababc'), categories=list('abc'), ordered=False) | ||
tm.assert_categorical_equal(result, exp) | ||
|
||
result = c.map(lambda x: 1) | ||
# GH 12766: Return an index not an array | ||
tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64))) | ||
|
||
def test_validate_inplace(self): | ||
cat = Categorical(['A', 'B', 'B', 'C', 'A']) | ||
invalid_values = [1, "True", [1, 2, 3], 5.0] | ||
|
||
for value in invalid_values: | ||
with pytest.raises(ValueError): | ||
cat.set_ordered(value=True, inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.as_ordered(inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.as_unordered(inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.set_categories(['X', 'Y', 'Z'], rename=True, inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.rename_categories(['X', 'Y', 'Z'], inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.reorder_categories( | ||
['X', 'Y', 'Z'], ordered=True, inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.add_categories( | ||
new_categories=['D', 'E', 'F'], inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.remove_categories(removals=['D', 'E', 'F'], inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.remove_unused_categories(inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.sort_values(inplace=value) | ||
|
||
def test_repeat(self): | ||
# GH10183 | ||
cat = Categorical(["a", "b"], categories=["a", "b"]) | ||
exp = Categorical(["a", "a", "b", "b"], categories=["a", "b"]) | ||
res = cat.repeat(2) | ||
tm.assert_categorical_equal(res, exp) | ||
|
||
def test_numpy_repeat(self): | ||
cat = Categorical(["a", "b"], categories=["a", "b"]) | ||
exp = Categorical(["a", "a", "b", "b"], categories=["a", "b"]) | ||
tm.assert_categorical_equal(np.repeat(cat, 2), exp) | ||
|
||
msg = "the 'axis' parameter is not supported" | ||
tm.assert_raises_regex(ValueError, msg, np.repeat, cat, 2, axis=1) | ||
|
||
def test_isna(self): | ||
exp = np.array([False, False, True]) | ||
c = Categorical(["a", "b", np.nan]) | ||
res = c.isna() | ||
|
||
tm.assert_numpy_array_equal(res, exp) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
e.g. like this is good