-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
TST: separate out grouping-type tests #18057
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,371 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
""" test function application """ | ||
|
||
import pytest | ||
|
||
from string import ascii_lowercase | ||
from pandas import (date_range, Timestamp, | ||
Index, MultiIndex, DataFrame, Series) | ||
from pandas.util.testing import assert_frame_equal, assert_series_equal | ||
from pandas.compat import product as cart_product | ||
|
||
import numpy as np | ||
|
||
import pandas.util.testing as tm | ||
import pandas as pd | ||
from .common import MixIn | ||
|
||
|
||
# describe | ||
# -------------------------------- | ||
|
||
class TestDescribe(MixIn): | ||
|
||
def test_apply_describe_bug(self): | ||
grouped = self.mframe.groupby(level='first') | ||
grouped.describe() # it works! | ||
|
||
def test_series_describe_multikey(self): | ||
ts = tm.makeTimeSeries() | ||
grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) | ||
result = grouped.describe() | ||
assert_series_equal(result['mean'], grouped.mean(), check_names=False) | ||
assert_series_equal(result['std'], grouped.std(), check_names=False) | ||
assert_series_equal(result['min'], grouped.min(), check_names=False) | ||
|
||
def test_series_describe_single(self): | ||
ts = tm.makeTimeSeries() | ||
grouped = ts.groupby(lambda x: x.month) | ||
result = grouped.apply(lambda x: x.describe()) | ||
expected = grouped.describe().stack() | ||
assert_series_equal(result, expected) | ||
|
||
def test_series_index_name(self): | ||
grouped = self.df.loc[:, ['C']].groupby(self.df['A']) | ||
result = grouped.agg(lambda x: x.mean()) | ||
assert result.index.name == 'A' | ||
|
||
def test_frame_describe_multikey(self): | ||
grouped = self.tsframe.groupby([lambda x: x.year, lambda x: x.month]) | ||
result = grouped.describe() | ||
desc_groups = [] | ||
for col in self.tsframe: | ||
group = grouped[col].describe() | ||
group_col = pd.MultiIndex([[col] * len(group.columns), | ||
group.columns], | ||
[[0] * len(group.columns), | ||
range(len(group.columns))]) | ||
group = pd.DataFrame(group.values, | ||
columns=group_col, | ||
index=group.index) | ||
desc_groups.append(group) | ||
expected = pd.concat(desc_groups, axis=1) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
groupedT = self.tsframe.groupby({'A': 0, 'B': 0, | ||
'C': 1, 'D': 1}, axis=1) | ||
result = groupedT.describe() | ||
expected = self.tsframe.describe().T | ||
expected.index = pd.MultiIndex([[0, 0, 1, 1], expected.index], | ||
[range(4), range(len(expected.index))]) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_frame_describe_tupleindex(self): | ||
|
||
# GH 14848 - regression from 0.19.0 to 0.19.1 | ||
df1 = DataFrame({'x': [1, 2, 3, 4, 5] * 3, | ||
'y': [10, 20, 30, 40, 50] * 3, | ||
'z': [100, 200, 300, 400, 500] * 3}) | ||
df1['k'] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5 | ||
df2 = df1.rename(columns={'k': 'key'}) | ||
pytest.raises(ValueError, lambda: df1.groupby('k').describe()) | ||
pytest.raises(ValueError, lambda: df2.groupby('key').describe()) | ||
|
||
def test_frame_describe_unstacked_format(self): | ||
# GH 4792 | ||
prices = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 24990, | ||
pd.Timestamp('2011-01-06 12:43:33', tz=None): 25499, | ||
pd.Timestamp('2011-01-06 12:54:09', tz=None): 25499} | ||
volumes = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, | ||
pd.Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, | ||
pd.Timestamp('2011-01-06 12:54:09', tz=None): 100000000} | ||
df = pd.DataFrame({'PRICE': prices, | ||
'VOLUME': volumes}) | ||
result = df.groupby('PRICE').VOLUME.describe() | ||
data = [df[df.PRICE == 24990].VOLUME.describe().values.tolist(), | ||
df[df.PRICE == 25499].VOLUME.describe().values.tolist()] | ||
expected = pd.DataFrame(data, | ||
index=pd.Index([24990, 25499], name='PRICE'), | ||
columns=['count', 'mean', 'std', 'min', | ||
'25%', '50%', '75%', 'max']) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
# nunique | ||
# -------------------------------- | ||
|
||
class TestNUnique(MixIn): | ||
|
||
def test_series_groupby_nunique(self): | ||
|
||
def check_nunique(df, keys, as_index=True): | ||
for sort, dropna in cart_product((False, True), repeat=2): | ||
gr = df.groupby(keys, as_index=as_index, sort=sort) | ||
left = gr['julie'].nunique(dropna=dropna) | ||
|
||
gr = df.groupby(keys, as_index=as_index, sort=sort) | ||
right = gr['julie'].apply(Series.nunique, dropna=dropna) | ||
if not as_index: | ||
right = right.reset_index(drop=True) | ||
|
||
assert_series_equal(left, right, check_names=False) | ||
|
||
days = date_range('2015-08-23', periods=10) | ||
|
||
for n, m in cart_product(10 ** np.arange(2, 6), (10, 100, 1000)): | ||
frame = DataFrame({ | ||
'jim': np.random.choice( | ||
list(ascii_lowercase), n), | ||
'joe': np.random.choice(days, n), | ||
'julie': np.random.randint(0, m, n) | ||
}) | ||
|
||
check_nunique(frame, ['jim']) | ||
check_nunique(frame, ['jim', 'joe']) | ||
|
||
frame.loc[1::17, 'jim'] = None | ||
frame.loc[3::37, 'joe'] = None | ||
frame.loc[7::19, 'julie'] = None | ||
frame.loc[8::19, 'julie'] = None | ||
frame.loc[9::19, 'julie'] = None | ||
|
||
check_nunique(frame, ['jim']) | ||
check_nunique(frame, ['jim', 'joe']) | ||
check_nunique(frame, ['jim'], as_index=False) | ||
check_nunique(frame, ['jim', 'joe'], as_index=False) | ||
|
||
def test_nunique(self): | ||
df = DataFrame({ | ||
'A': list('abbacc'), | ||
'B': list('abxacc'), | ||
'C': list('abbacx'), | ||
}) | ||
|
||
expected = DataFrame({'A': [1] * 3, 'B': [1, 2, 1], 'C': [1, 1, 2]}) | ||
result = df.groupby('A', as_index=False).nunique() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
# as_index | ||
expected.index = list('abc') | ||
expected.index.name = 'A' | ||
result = df.groupby('A').nunique() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
# with na | ||
result = df.replace({'x': None}).groupby('A').nunique(dropna=False) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
# dropna | ||
expected = DataFrame({'A': [1] * 3, 'B': [1] * 3, 'C': [1] * 3}, | ||
index=list('abc')) | ||
expected.index.name = 'A' | ||
result = df.replace({'x': None}).groupby('A').nunique() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_nunique_with_object(self): | ||
# GH 11077 | ||
data = pd.DataFrame( | ||
[[100, 1, 'Alice'], | ||
[200, 2, 'Bob'], | ||
[300, 3, 'Charlie'], | ||
[-400, 4, 'Dan'], | ||
[500, 5, 'Edith']], | ||
columns=['amount', 'id', 'name'] | ||
) | ||
|
||
result = data.groupby(['id', 'amount'])['name'].nunique() | ||
index = MultiIndex.from_arrays([data.id, data.amount]) | ||
expected = pd.Series([1] * 5, name='name', index=index) | ||
tm.assert_series_equal(result, expected) | ||
|
||
def test_nunique_with_empty_series(self): | ||
# GH 12553 | ||
data = pd.Series(name='name') | ||
result = data.groupby(level=0).nunique() | ||
expected = pd.Series(name='name', dtype='int64') | ||
tm.assert_series_equal(result, expected) | ||
|
||
def test_nunique_with_timegrouper(self): | ||
# GH 13453 | ||
test = pd.DataFrame({ | ||
'time': [Timestamp('2016-06-28 09:35:35'), | ||
Timestamp('2016-06-28 16:09:30'), | ||
Timestamp('2016-06-28 16:46:28')], | ||
'data': ['1', '2', '3']}).set_index('time') | ||
result = test.groupby(pd.Grouper(freq='h'))['data'].nunique() | ||
expected = test.groupby( | ||
pd.Grouper(freq='h') | ||
)['data'].apply(pd.Series.nunique) | ||
tm.assert_series_equal(result, expected) | ||
|
||
|
||
# count | ||
# -------------------------------- | ||
|
||
class TestCount(MixIn): | ||
|
||
def test_groupby_timedelta_cython_count(self): | ||
df = DataFrame({'g': list('ab' * 2), | ||
'delt': np.arange(4).astype('timedelta64[ns]')}) | ||
expected = Series([ | ||
2, 2 | ||
], index=pd.Index(['a', 'b'], name='g'), name='delt') | ||
result = df.groupby('g').delt.count() | ||
tm.assert_series_equal(expected, result) | ||
|
||
def test_count(self): | ||
n = 1 << 15 | ||
dr = date_range('2015-08-30', periods=n // 10, freq='T') | ||
|
||
df = DataFrame({ | ||
'1st': np.random.choice( | ||
list(ascii_lowercase), n), | ||
'2nd': np.random.randint(0, 5, n), | ||
'3rd': np.random.randn(n).round(3), | ||
'4th': np.random.randint(-10, 10, n), | ||
'5th': np.random.choice(dr, n), | ||
'6th': np.random.randn(n).round(3), | ||
'7th': np.random.randn(n).round(3), | ||
'8th': np.random.choice(dr, n) - np.random.choice(dr, 1), | ||
'9th': np.random.choice( | ||
list(ascii_lowercase), n) | ||
}) | ||
|
||
for col in df.columns.drop(['1st', '2nd', '4th']): | ||
df.loc[np.random.choice(n, n // 10), col] = np.nan | ||
|
||
df['9th'] = df['9th'].astype('category') | ||
|
||
for key in '1st', '2nd', ['1st', '2nd']: | ||
left = df.groupby(key).count() | ||
right = df.groupby(key).apply(DataFrame.count).drop(key, axis=1) | ||
assert_frame_equal(left, right) | ||
|
||
# GH5610 | ||
# count counts non-nulls | ||
df = pd.DataFrame([[1, 2, 'foo'], | ||
[1, np.nan, 'bar'], | ||
[3, np.nan, np.nan]], | ||
columns=['A', 'B', 'C']) | ||
|
||
count_as = df.groupby('A').count() | ||
count_not_as = df.groupby('A', as_index=False).count() | ||
|
||
expected = DataFrame([[1, 2], [0, 0]], columns=['B', 'C'], | ||
index=[1, 3]) | ||
expected.index.name = 'A' | ||
assert_frame_equal(count_not_as, expected.reset_index()) | ||
assert_frame_equal(count_as, expected) | ||
|
||
count_B = df.groupby('A')['B'].count() | ||
assert_series_equal(count_B, expected['B']) | ||
|
||
def test_count_object(self): | ||
df = pd.DataFrame({'a': ['a'] * 3 + ['b'] * 3, 'c': [2] * 3 + [3] * 3}) | ||
result = df.groupby('c').a.count() | ||
expected = pd.Series([ | ||
3, 3 | ||
], index=pd.Index([2, 3], name='c'), name='a') | ||
tm.assert_series_equal(result, expected) | ||
|
||
df = pd.DataFrame({'a': ['a', np.nan, np.nan] + ['b'] * 3, | ||
'c': [2] * 3 + [3] * 3}) | ||
result = df.groupby('c').a.count() | ||
expected = pd.Series([ | ||
1, 3 | ||
], index=pd.Index([2, 3], name='c'), name='a') | ||
tm.assert_series_equal(result, expected) | ||
|
||
def test_count_cross_type(self): # GH8169 | ||
vals = np.hstack((np.random.randint(0, 5, (100, 2)), np.random.randint( | ||
0, 2, (100, 2)))) | ||
|
||
df = pd.DataFrame(vals, columns=['a', 'b', 'c', 'd']) | ||
df[df == 2] = np.nan | ||
expected = df.groupby(['c', 'd']).count() | ||
|
||
for t in ['float32', 'object']: | ||
df['a'] = df['a'].astype(t) | ||
df['b'] = df['b'].astype(t) | ||
result = df.groupby(['c', 'd']).count() | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_lower_int_prec_count(self): | ||
df = DataFrame({'a': np.array( | ||
[0, 1, 2, 100], np.int8), | ||
'b': np.array( | ||
[1, 2, 3, 6], np.uint32), | ||
'c': np.array( | ||
[4, 5, 6, 8], np.int16), | ||
'grp': list('ab' * 2)}) | ||
result = df.groupby('grp').count() | ||
expected = DataFrame({'a': [2, 2], | ||
'b': [2, 2], | ||
'c': [2, 2]}, index=pd.Index(list('ab'), | ||
name='grp')) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
def test_count_uses_size_on_exception(self): | ||
class RaisingObjectException(Exception): | ||
pass | ||
|
||
class RaisingObject(object): | ||
|
||
def __init__(self, msg='I will raise inside Cython'): | ||
super(RaisingObject, self).__init__() | ||
self.msg = msg | ||
|
||
def __eq__(self, other): | ||
# gets called in Cython to check that raising calls the method | ||
raise RaisingObjectException(self.msg) | ||
|
||
df = DataFrame({'a': [RaisingObject() for _ in range(4)], | ||
'grp': list('ab' * 2)}) | ||
result = df.groupby('grp').count() | ||
expected = DataFrame({'a': [2, 2]}, index=pd.Index( | ||
list('ab'), name='grp')) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
# size | ||
# -------------------------------- | ||
|
||
class TestSize(MixIn): | ||
|
||
def test_size(self): | ||
grouped = self.df.groupby(['A', 'B']) | ||
result = grouped.size() | ||
for key, group in grouped: | ||
assert result[key] == len(group) | ||
|
||
grouped = self.df.groupby('A') | ||
result = grouped.size() | ||
for key, group in grouped: | ||
assert result[key] == len(group) | ||
|
||
grouped = self.df.groupby('B') | ||
result = grouped.size() | ||
for key, group in grouped: | ||
assert result[key] == len(group) | ||
|
||
df = DataFrame(np.random.choice(20, (1000, 3)), columns=list('abc')) | ||
for sort, key in cart_product((False, True), ('a', 'b', ['a', 'b'])): | ||
left = df.groupby(key, sort=sort).size() | ||
right = df.groupby(key, sort=sort)['c'].apply(lambda a: a.shape[0]) | ||
assert_series_equal(left, right, check_names=False) | ||
|
||
# GH11699 | ||
df = DataFrame([], columns=['A', 'B']) | ||
out = Series([], dtype='int64', index=Index([], name='A')) | ||
assert_series_equal(df.groupby('A').size(), out) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If I hadn't looked at the filename, I would have been completely confused by this module docstring.