Skip to content

BUG: Categorical(Index) passed as categories #17888

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Oct 18, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.21.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -1023,6 +1023,7 @@ Categorical
- Bug in the categorical constructor with empty values and categories causing the ``.categories`` to be an empty ``Float64Index`` rather than an empty ``Index`` with object dtype (:issue:`17248`)
- Bug in categorical operations with :ref:`Series.cat <categorical.cat>` not preserving the original Series' name (:issue:`17509`)
- Bug in :func:`DataFrame.merge` failing for categorical columns with boolean/int data types (:issue:`17187`)
- Bug in constructing a ``Categorical``/``CategoricalDtype`` when the specified ``categories`` are of categorical type (:issue:`17884`).

.. _whatsnew_0210.pypy:

Expand Down
17 changes: 10 additions & 7 deletions pandas/core/dtypes/dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import re
import numpy as np
from pandas import compat
from pandas.core.dtypes.generic import ABCIndexClass
from pandas.core.dtypes.generic import ABCIndexClass, ABCCategoricalIndex


class ExtensionDtype(object):
Expand Down Expand Up @@ -170,16 +170,16 @@ def _from_categorical_dtype(cls, dtype, categories=None, ordered=None):
return cls(categories, ordered)

def _finalize(self, categories, ordered, fastpath=False):
from pandas.core.indexes.base import Index

if ordered is None:
ordered = False
else:
self._validate_ordered(ordered)

if categories is not None:
categories = Index(categories, tupleize_cols=False)
# validation
self._validate_categories(categories, fastpath=fastpath)
self._validate_ordered(ordered)
categories = self._validate_categories(categories,
fastpath=fastpath)

self._categories = categories
self._ordered = ordered

Expand Down Expand Up @@ -316,7 +316,7 @@ def _validate_categories(categories, fastpath=False):
from pandas import Index

if not isinstance(categories, ABCIndexClass):
categories = Index(categories)
categories = Index(categories, tupleize_cols=False)

if not fastpath:

Expand All @@ -326,6 +326,9 @@ def _validate_categories(categories, fastpath=False):
if not categories.is_unique:
raise ValueError('Categorical categories must be unique')

if isinstance(categories, ABCCategoricalIndex):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

here you an also accept ABCCategorical

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

a Categorical has already been converted to CategoricalIndex

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ahh ok

categories = categories.categories

return categories

@property
Expand Down
10 changes: 9 additions & 1 deletion pandas/tests/dtypes/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,8 @@

import numpy as np
import pandas as pd
from pandas import Series, Categorical, IntervalIndex, date_range
from pandas import (
Series, Categorical, CategoricalIndex, IntervalIndex, date_range)

from pandas.core.dtypes.dtypes import (
DatetimeTZDtype, PeriodDtype,
Expand Down Expand Up @@ -657,3 +658,10 @@ def test_str_vs_repr(self):
# Py2 will have unicode prefixes
pat = r"CategoricalDtype\(categories=\[.*\], ordered=False\)"
assert re.match(pat, repr(c1))

def test_categorical_categories(self):
# GH17884
c1 = CategoricalDtype(Categorical(['a', 'b']))
tm.assert_index_equal(c1.categories, pd.Index(['a', 'b']))
c1 = CategoricalDtype(CategoricalIndex(['a', 'b']))
tm.assert_index_equal(c1.categories, pd.Index(['a', 'b']))
28 changes: 28 additions & 0 deletions pandas/tests/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -519,6 +519,18 @@ def test_contructor_from_categorical_string(self):
result = Categorical(values, categories=['a', 'b', 'c'], ordered=True)
tm.assert_categorical_equal(result, expected)

def test_constructor_with_categorical_categories(self):
# GH17884
expected = Categorical(['a', 'b'], categories=['a', 'b', 'c'])

result = Categorical(
['a', 'b'], categories=Categorical(['a', 'b', 'c']))
tm.assert_categorical_equal(result, expected)

result = Categorical(
['a', 'b'], categories=CategoricalIndex(['a', 'b', 'c']))
tm.assert_categorical_equal(result, expected)

def test_from_codes(self):

# too few categories
Expand Down Expand Up @@ -560,6 +572,22 @@ def f():
codes = np.random.choice([0, 1], 5, p=[0.9, 0.1])
pd.Categorical.from_codes(codes, categories=["train", "test"])

def test_from_codes_with_categorical_categories(self):
# GH17884
expected = Categorical(['a', 'b'], categories=['a', 'b', 'c'])

result = Categorical.from_codes(
[0, 1], categories=Categorical(['a', 'b', 'c']))
tm.assert_categorical_equal(result, expected)

result = Categorical.from_codes(
[0, 1], categories=CategoricalIndex(['a', 'b', 'c']))
tm.assert_categorical_equal(result, expected)

# non-unique Categorical still raises
with pytest.raises(ValueError):
Categorical.from_codes([0, 1], Categorical(['a', 'b', 'a']))

@pytest.mark.parametrize('dtype', [None, 'category'])
def test_from_inferred_categories(self, dtype):
cats = ['a', 'b']
Expand Down