Skip to content

DEPR: deprecate pd.TimeGrouper #17703

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 28, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.21.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -492,6 +492,7 @@ Deprecations
- ``pd.options.html.border`` has been deprecated in favor of ``pd.options.display.html.border`` (:issue:`15793`).
- :func:`SeriesGroupBy.nth` has deprecated ``True`` in favor of ``'all'`` for its kwarg ``dropna`` (:issue:`11038`).
- :func:`DataFrame.as_blocks` is deprecated, as this is exposing the internal implementation (:issue:`17302`)
- ``pd.TimeGrouper`` is deprecated in favor of :class:`pandas.Grouper` (:issue:`16747`)

.. _whatsnew_0210.deprecations.argmin_min

Expand Down
17 changes: 14 additions & 3 deletions pandas/core/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,6 @@
from pandas.tseries.offsets import DateOffset
from pandas.core.tools.datetimes import to_datetime
from pandas.core.tools.timedeltas import to_timedelta
from pandas.core.resample import TimeGrouper

# see gh-14094.
from pandas.util._depr_module import _DeprecatedModule
Expand All @@ -52,8 +51,8 @@

# deprecation, xref #13790
def match(*args, **kwargs):
import warnings

import warnings
warnings.warn("pd.match() is deprecated and will be removed "
"in a future version",
FutureWarning, stacklevel=2)
Expand All @@ -64,8 +63,20 @@ def match(*args, **kwargs):
def groupby(*args, **kwargs):
import warnings

warnings.warn("pd.groupby() is deprecated and will be removed "
warnings.warn("pd.groupby() is deprecated and will be removed; "
"Please use the Series.groupby() or "
"DataFrame.groupby() methods",
FutureWarning, stacklevel=2)
return args[0].groupby(*args[1:], **kwargs)


# deprecation, xref
class TimeGrouper(object):

def __new__(cls, *args, **kwargs):
from pandas.core.resample import TimeGrouper
import warnings
warnings.warn("pd.TimeGrouper is deprecated and will be removed; "
"Please use pd.Grouper(freq=...)",
FutureWarning, stacklevel=2)
return TimeGrouper(*args, **kwargs)
9 changes: 7 additions & 2 deletions pandas/tests/api/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,11 +47,11 @@ class TestPDApi(Base):
'Grouper', 'HDFStore', 'Index', 'Int64Index', 'MultiIndex',
'Period', 'PeriodIndex', 'RangeIndex', 'UInt64Index',
'Series', 'SparseArray', 'SparseDataFrame',
'SparseSeries', 'TimeGrouper', 'Timedelta',
'SparseSeries', 'Timedelta',
'TimedeltaIndex', 'Timestamp', 'Interval', 'IntervalIndex']

# these are already deprecated; awaiting removal
deprecated_classes = ['WidePanel', 'Panel4D',
deprecated_classes = ['WidePanel', 'Panel4D', 'TimeGrouper',
'SparseList', 'Expr', 'Term']

# these should be deprecated in the future
Expand Down Expand Up @@ -184,6 +184,11 @@ def test_groupby(self):
check_stacklevel=False):
pd.groupby(pd.Series([1, 2, 3]), [1, 1, 1])

def test_TimeGrouper(self):
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
pd.TimeGrouper(freq='D')

# GH 15940

def test_get_store(self):
Expand Down
12 changes: 6 additions & 6 deletions pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -3335,7 +3335,7 @@ def test_groupby_with_empty(self):
index = pd.DatetimeIndex(())
data = ()
series = pd.Series(data, index)
grouper = pd.core.resample.TimeGrouper('D')
grouper = pd.Grouper(freq='D')
grouped = series.groupby(grouper)
assert next(iter(grouped), None) is None

Expand All @@ -3354,7 +3354,7 @@ def test_groupby_with_small_elem(self):
df = pd.DataFrame({'event': ['start', 'start'],
'change': [1234, 5678]},
index=pd.DatetimeIndex(['2014-09-10', '2013-10-10']))
grouped = df.groupby([pd.TimeGrouper(freq='M'), 'event'])
grouped = df.groupby([pd.Grouper(freq='M'), 'event'])
assert len(grouped.groups) == 2
assert grouped.ngroups == 2
assert (pd.Timestamp('2014-09-30'), 'start') in grouped.groups
Expand All @@ -3369,7 +3369,7 @@ def test_groupby_with_small_elem(self):
'change': [1234, 5678, 9123]},
index=pd.DatetimeIndex(['2014-09-10', '2013-10-10',
'2014-09-15']))
grouped = df.groupby([pd.TimeGrouper(freq='M'), 'event'])
grouped = df.groupby([pd.Grouper(freq='M'), 'event'])
assert len(grouped.groups) == 2
assert grouped.ngroups == 2
assert (pd.Timestamp('2014-09-30'), 'start') in grouped.groups
Expand All @@ -3385,7 +3385,7 @@ def test_groupby_with_small_elem(self):
'change': [1234, 5678, 9123]},
index=pd.DatetimeIndex(['2014-09-10', '2013-10-10',
'2014-08-05']))
grouped = df.groupby([pd.TimeGrouper(freq='M'), 'event'])
grouped = df.groupby([pd.Grouper(freq='M'), 'event'])
assert len(grouped.groups) == 3
assert grouped.ngroups == 3
assert (pd.Timestamp('2014-09-30'), 'start') in grouped.groups
Expand Down Expand Up @@ -3682,9 +3682,9 @@ def test_nunique_with_timegrouper(self):
Timestamp('2016-06-28 16:09:30'),
Timestamp('2016-06-28 16:46:28')],
'data': ['1', '2', '3']}).set_index('time')
result = test.groupby(pd.TimeGrouper(freq='h'))['data'].nunique()
result = test.groupby(pd.Grouper(freq='h'))['data'].nunique()
expected = test.groupby(
pd.TimeGrouper(freq='h')
pd.Grouper(freq='h')
)['data'].apply(pd.Series.nunique)
tm.assert_series_equal(result, expected)

Expand Down
20 changes: 11 additions & 9 deletions pandas/tests/groupby/test_timegrouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,10 +52,10 @@ def test_groupby_with_timegrouper(self):
assert_frame_equal(result1, expected)

df_sorted = df.sort_index()
result2 = df_sorted.groupby(pd.TimeGrouper(freq='5D')).sum()
result2 = df_sorted.groupby(pd.Grouper(freq='5D')).sum()
assert_frame_equal(result2, expected)

result3 = df.groupby(pd.TimeGrouper(freq='5D')).sum()
result3 = df.groupby(pd.Grouper(freq='5D')).sum()
assert_frame_equal(result3, expected)

def test_groupby_with_timegrouper_methods(self):
Expand All @@ -80,7 +80,7 @@ def test_groupby_with_timegrouper_methods(self):

for df in [df_original, df_sorted]:
df = df.set_index('Date', drop=False)
g = df.groupby(pd.TimeGrouper('6M'))
g = df.groupby(pd.Grouper(freq='6M'))
assert g.group_keys
assert isinstance(g.grouper, pd.core.groupby.BinGrouper)
groups = g.groups
Expand Down Expand Up @@ -265,11 +265,11 @@ def test_timegrouper_with_reg_groups(self):
['date', 'user_id']).sort_index().astype('int64')
expected.name = 'whole_cost'

result1 = df.sort_index().groupby([pd.TimeGrouper(freq=freq),
result1 = df.sort_index().groupby([pd.Grouper(freq=freq),
'user_id'])['whole_cost'].sum()
assert_series_equal(result1, expected)

result2 = df.groupby([pd.TimeGrouper(freq=freq), 'user_id'])[
result2 = df.groupby([pd.Grouper(freq=freq), 'user_id'])[
'whole_cost'].sum()
assert_series_equal(result2, expected)

Expand Down Expand Up @@ -340,7 +340,7 @@ def sumfunc_series(x):
return pd.Series([x['value'].sum()], ('sum',))

expected = df.groupby(pd.Grouper(key='date')).apply(sumfunc_series)
result = (df_dt.groupby(pd.TimeGrouper(freq='M', key='date'))
result = (df_dt.groupby(pd.Grouper(freq='M', key='date'))
.apply(sumfunc_series))
assert_frame_equal(result.reset_index(drop=True),
expected.reset_index(drop=True))
Expand All @@ -358,8 +358,10 @@ def sumfunc_value(x):
return x.value.sum()

expected = df.groupby(pd.Grouper(key='date')).apply(sumfunc_value)
result = (df_dt.groupby(pd.TimeGrouper(freq='M', key='date'))
.apply(sumfunc_value))
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = (df_dt.groupby(pd.TimeGrouper(freq='M', key='date'))
.apply(sumfunc_value))
assert_series_equal(result.reset_index(drop=True),
expected.reset_index(drop=True))

Expand Down Expand Up @@ -617,7 +619,7 @@ def test_nunique_with_timegrouper_and_nat(self):
Timestamp('2016-06-28 16:46:28')],
'data': ['1', '2', '3']})

grouper = pd.TimeGrouper(key='time', freq='h')
grouper = pd.Grouper(key='time', freq='h')
result = test.groupby(grouper)['data'].nunique()
expected = test[test.time.notnull()].groupby(grouper)['data'].nunique()
tm.assert_series_equal(result, expected)
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def demean(arr):

# GH 8430
df = tm.makeTimeDataFrame()
g = df.groupby(pd.TimeGrouper('M'))
g = df.groupby(pd.Grouper(freq='M'))
g.transform(lambda x: x - 1)

# GH 9700
Expand Down
12 changes: 8 additions & 4 deletions pandas/tests/test_resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -1983,8 +1983,8 @@ def test_resample_nunique(self):
pd.Timestamp('2015-06-08 00:00:00'): '2015-06-08'}})
r = df.resample('D')
g = df.groupby(pd.Grouper(freq='D'))
expected = df.groupby(pd.TimeGrouper('D')).ID.apply(lambda x:
x.nunique())
expected = df.groupby(pd.Grouper(freq='D')).ID.apply(lambda x:
x.nunique())
assert expected.name == 'ID'

for t in [r, g]:
Expand Down Expand Up @@ -3075,7 +3075,9 @@ def setup_method(self, method):
index=date_range('1/1/2000', periods=1000))

def test_apply(self):
grouper = TimeGrouper('A', label='right', closed='right')
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
grouper = pd.TimeGrouper(freq='A', label='right', closed='right')

grouped = self.ts.groupby(grouper)

Expand All @@ -3093,7 +3095,9 @@ def test_count(self):

expected = self.ts.groupby(lambda x: x.year).count()

grouper = TimeGrouper('A', label='right', closed='right')
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
grouper = pd.TimeGrouper(freq='A', label='right', closed='right')
result = self.ts.groupby(grouper).count()
expected.index = result.index
assert_series_equal(result, expected)
Expand Down