Skip to content

[Issue: #16416] Adding examples for some DataFrame methods #16437

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
May 25, 2017
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
143 changes: 143 additions & 0 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -2055,6 +2055,37 @@ def drop(self, labels, axis=0, level=None, inplace=False, errors='raise'):
Returns
-------
dropped : type of caller

Examples
--------
>>> df = pd.DataFrame([[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 1, 2, 3],
... [4, 5, 6, 7]
... ],
... columns=list('ABCD'))
>>> df
A B C D
0 1 2 3 4
1 5 6 7 8
2 9 1 2 3
3 4 5 6 7

Drop a row by index

>>> df.drop([0, 1])
A B C D
2 9 1 2 3
3 4 5 6 7

Drop columns

>>> df.drop(['A', 'B'], axis=1)
C D
0 3 4
1 7 8
2 2 3
3 6 7
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
axis = self._get_axis_number(axis)
Expand Down Expand Up @@ -2168,6 +2199,66 @@ def add_suffix(self, suffix):
Returns
-------
sorted_obj : %(klass)s

Examples
--------
>>> df = pd.DataFrame({
... 'col1' : ['A', 'A', 'B', np.nan, 'D', 'C'],
... 'col2' : [2, 1, 9, 8, 7, 4],
... 'col3': [0, 1, 9, 4, 2, 3],
... })
>>> df
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
3 NaN 8 4
4 D 7 2
5 C 4 3

Sort by col1

>>> df.sort_values(by=['col1'])
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4

Sort by multiple columns

>>> df.sort_values(by=['col1', 'col2'])
col1 col2 col3
1 A 1 1
0 A 2 0
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4

Sort Descending

>>> df.sort_values(by='col1', ascending=False)
col1 col2 col3
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
3 NaN 8 4

Putting NAs first

>>> df.sort_values(by='col1', ascending=False, na_position='first')
col1 col2 col3
3 NaN 8 4
4 D 7 2
5 C 4 3
2 B 9 9
0 A 2 0
1 A 1 1
"""

def sort_values(self, by, axis=0, ascending=True, inplace=False,
Expand Down Expand Up @@ -3468,6 +3559,58 @@ def convert_objects(self, convert_dates=True, convert_numeric=False,
Returns
-------
filled : %(klass)s

Examples
--------
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4

Replace all NaN elements with 0s.

>>> df.fillna(0)
A B C D
0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill')
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4

Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1,
2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1)
A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4
""")

@Appender(_shared_docs['fillna'] % _shared_doc_kwargs)
Expand Down