Skip to content

MAINT: Remove self.assertEqual from testing #16169

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 29, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions pandas/compat/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@ def signature(f):
map = map
zip = zip
filter = filter
intern = sys.intern
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is fine
but where is it used?

Copy link
Member Author

@gfyoung gfyoung Apr 29, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I stumbled upon it in a test (test_util.py), so I added this to compat for that reason.

reduce = functools.reduce
long = int
unichr = chr
Expand Down Expand Up @@ -146,6 +147,7 @@ def signature(f):

# import iterator versions of these functions
range = xrange
intern = intern
zip = itertools.izip
filter = itertools.ifilter
map = itertools.imap
Expand Down
99 changes: 49 additions & 50 deletions pandas/tests/computation/test_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from numpy.random import randn, rand, randint
import numpy as np

from pandas.core.dtypes.common import is_list_like, is_scalar
from pandas.core.dtypes.common import is_bool, is_list_like, is_scalar
import pandas as pd
from pandas.core import common as com
from pandas.errors import PerformanceWarning
Expand Down Expand Up @@ -209,7 +209,7 @@ def check_equal(self, result, expected):
elif isinstance(result, np.ndarray):
tm.assert_numpy_array_equal(result, expected)
else:
self.assertEqual(result, expected)
assert result == expected

def check_complex_cmp_op(self, lhs, cmp1, rhs, binop, cmp2):
skip_these = _scalar_skip
Expand Down Expand Up @@ -610,30 +610,28 @@ def test_scalar_unary(self):
with pytest.raises(TypeError):
pd.eval('~1.0', engine=self.engine, parser=self.parser)

self.assertEqual(
pd.eval('-1.0', parser=self.parser, engine=self.engine), -1.0)
self.assertEqual(
pd.eval('+1.0', parser=self.parser, engine=self.engine), +1.0)

self.assertEqual(
pd.eval('~1', parser=self.parser, engine=self.engine), ~1)
self.assertEqual(
pd.eval('-1', parser=self.parser, engine=self.engine), -1)
self.assertEqual(
pd.eval('+1', parser=self.parser, engine=self.engine), +1)

self.assertEqual(
pd.eval('~True', parser=self.parser, engine=self.engine), ~True)
self.assertEqual(
pd.eval('~False', parser=self.parser, engine=self.engine), ~False)
self.assertEqual(
pd.eval('-True', parser=self.parser, engine=self.engine), -True)
self.assertEqual(
pd.eval('-False', parser=self.parser, engine=self.engine), -False)
self.assertEqual(
pd.eval('+True', parser=self.parser, engine=self.engine), +True)
self.assertEqual(
pd.eval('+False', parser=self.parser, engine=self.engine), +False)
assert pd.eval('-1.0', parser=self.parser,
engine=self.engine) == -1.0
assert pd.eval('+1.0', parser=self.parser,
engine=self.engine) == +1.0
assert pd.eval('~1', parser=self.parser,
engine=self.engine) == ~1
assert pd.eval('-1', parser=self.parser,
engine=self.engine) == -1
assert pd.eval('+1', parser=self.parser,
engine=self.engine) == +1
assert pd.eval('~True', parser=self.parser,
engine=self.engine) == ~True
assert pd.eval('~False', parser=self.parser,
engine=self.engine) == ~False
assert pd.eval('-True', parser=self.parser,
engine=self.engine) == -True
assert pd.eval('-False', parser=self.parser,
engine=self.engine) == -False
assert pd.eval('+True', parser=self.parser,
engine=self.engine) == +True
assert pd.eval('+False', parser=self.parser,
engine=self.engine) == +False

def test_unary_in_array(self):
# GH 11235
Expand All @@ -658,50 +656,51 @@ def test_disallow_scalar_bool_ops(self):
pd.eval(ex, engine=self.engine, parser=self.parser)

def test_identical(self):
# GH 10546
# see gh-10546
x = 1
result = pd.eval('x', engine=self.engine, parser=self.parser)
self.assertEqual(result, 1)
assert result == 1
assert is_scalar(result)

x = 1.5
result = pd.eval('x', engine=self.engine, parser=self.parser)
self.assertEqual(result, 1.5)
assert result == 1.5
assert is_scalar(result)

x = False
result = pd.eval('x', engine=self.engine, parser=self.parser)
self.assertEqual(result, False)
assert not result
assert is_bool(result)
assert is_scalar(result)

x = np.array([1])
result = pd.eval('x', engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equal(result, np.array([1]))
self.assertEqual(result.shape, (1, ))
assert result.shape == (1, )

x = np.array([1.5])
result = pd.eval('x', engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equal(result, np.array([1.5]))
self.assertEqual(result.shape, (1, ))
assert result.shape == (1, )

x = np.array([False]) # noqa
result = pd.eval('x', engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equal(result, np.array([False]))
self.assertEqual(result.shape, (1, ))
assert result.shape == (1, )

def test_line_continuation(self):
# GH 11149
exp = """1 + 2 * \
5 - 1 + 2 """
result = pd.eval(exp, engine=self.engine, parser=self.parser)
self.assertEqual(result, 12)
assert result == 12

def test_float_truncation(self):
# GH 14241
exp = '1000000000.006'
result = pd.eval(exp, engine=self.engine, parser=self.parser)
expected = np.float64(exp)
self.assertEqual(result, expected)
assert result == expected

df = pd.DataFrame({'A': [1000000000.0009,
1000000000.0011,
Expand Down Expand Up @@ -1121,15 +1120,15 @@ def test_simple_bool_ops(self):
ex = '{0} {1} {2}'.format(lhs, op, rhs)
res = self.eval(ex)
exp = eval(ex)
self.assertEqual(res, exp)
assert res == exp

def test_bool_ops_with_constants(self):
for op, lhs, rhs in product(expr._bool_ops_syms, ('True', 'False'),
('True', 'False')):
ex = '{0} {1} {2}'.format(lhs, op, rhs)
res = self.eval(ex)
exp = eval(ex)
self.assertEqual(res, exp)
assert res == exp

def test_panel_fails(self):
with catch_warnings(record=True):
Expand Down Expand Up @@ -1169,19 +1168,19 @@ def test_truediv(self):

res = self.eval('1 / 2', truediv=True)
expec = 0.5
self.assertEqual(res, expec)
assert res == expec

res = self.eval('1 / 2', truediv=False)
expec = 0.5
self.assertEqual(res, expec)
assert res == expec

res = self.eval('s / 2', truediv=False)
expec = 0.5
self.assertEqual(res, expec)
assert res == expec

res = self.eval('s / 2', truediv=True)
expec = 0.5
self.assertEqual(res, expec)
assert res == expec
else:
res = self.eval(ex, truediv=False)
tm.assert_numpy_array_equal(res, np.array([1]))
Expand All @@ -1191,19 +1190,19 @@ def test_truediv(self):

res = self.eval('1 / 2', truediv=True)
expec = 0.5
self.assertEqual(res, expec)
assert res == expec

res = self.eval('1 / 2', truediv=False)
expec = 0
self.assertEqual(res, expec)
assert res == expec

res = self.eval('s / 2', truediv=False)
expec = 0
self.assertEqual(res, expec)
assert res == expec

res = self.eval('s / 2', truediv=True)
expec = 0.5
self.assertEqual(res, expec)
assert res == expec

def test_failing_subscript_with_name_error(self):
df = DataFrame(np.random.randn(5, 3)) # noqa
Expand Down Expand Up @@ -1549,7 +1548,7 @@ def test_bool_ops_with_constants(self):
else:
res = self.eval(ex)
exp = eval(ex)
self.assertEqual(res, exp)
assert res == exp

def test_simple_bool_ops(self):
for op, lhs, rhs in product(expr._bool_ops_syms, (True, False),
Expand All @@ -1561,7 +1560,7 @@ def test_simple_bool_ops(self):
else:
res = pd.eval(ex, engine=self.engine, parser=self.parser)
exp = eval(ex)
self.assertEqual(res, exp)
assert res == exp


class TestOperationsPythonPython(TestOperationsNumExprPython):
Expand Down Expand Up @@ -1650,14 +1649,14 @@ def test_df_arithmetic_subexpression(self):

def check_result_type(self, dtype, expect_dtype):
df = DataFrame({'a': np.random.randn(10).astype(dtype)})
self.assertEqual(df.a.dtype, dtype)
assert df.a.dtype == dtype
df.eval("b = sin(a)",
engine=self.engine,
parser=self.parser, inplace=True)
got = df.b
expect = np.sin(df.a)
self.assertEqual(expect.dtype, got.dtype)
self.assertEqual(expect_dtype, got.dtype)
assert expect.dtype == got.dtype
assert expect_dtype == got.dtype
tm.assert_series_equal(got, expect, check_names=False)

def test_result_types(self):
Expand Down
45 changes: 22 additions & 23 deletions pandas/tests/dtypes/test_cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ def test_maybe_convert_string_to_array(self):
assert result.dtype == object

result = maybe_convert_string_to_object(1)
self.assertEqual(result, 1)
assert result == 1

arr = np.array(['x', 'y'], dtype=str)
result = maybe_convert_string_to_object(arr)
Expand All @@ -187,31 +187,31 @@ def test_maybe_convert_scalar(self):

# pass thru
result = maybe_convert_scalar('x')
self.assertEqual(result, 'x')
assert result == 'x'
result = maybe_convert_scalar(np.array([1]))
self.assertEqual(result, np.array([1]))
assert result == np.array([1])

# leave scalar dtype
result = maybe_convert_scalar(np.int64(1))
self.assertEqual(result, np.int64(1))
assert result == np.int64(1)
result = maybe_convert_scalar(np.int32(1))
self.assertEqual(result, np.int32(1))
assert result == np.int32(1)
result = maybe_convert_scalar(np.float32(1))
self.assertEqual(result, np.float32(1))
assert result == np.float32(1)
result = maybe_convert_scalar(np.int64(1))
self.assertEqual(result, np.float64(1))
assert result == np.float64(1)

# coerce
result = maybe_convert_scalar(1)
self.assertEqual(result, np.int64(1))
assert result == np.int64(1)
result = maybe_convert_scalar(1.0)
self.assertEqual(result, np.float64(1))
assert result == np.float64(1)
result = maybe_convert_scalar(Timestamp('20130101'))
self.assertEqual(result, Timestamp('20130101').value)
assert result == Timestamp('20130101').value
result = maybe_convert_scalar(datetime(2013, 1, 1))
self.assertEqual(result, Timestamp('20130101').value)
assert result == Timestamp('20130101').value
result = maybe_convert_scalar(Timedelta('1 day 1 min'))
self.assertEqual(result, Timedelta('1 day 1 min').value)
assert result == Timedelta('1 day 1 min').value


class TestConvert(tm.TestCase):
Expand Down Expand Up @@ -291,34 +291,33 @@ def test_numpy_dtypes(self):
((np.dtype('datetime64[ns]'), np.int64), np.object)
)
for src, common in testcases:
self.assertEqual(find_common_type(src), common)
assert find_common_type(src) == common

with pytest.raises(ValueError):
# empty
find_common_type([])

def test_categorical_dtype(self):
dtype = CategoricalDtype()
self.assertEqual(find_common_type([dtype]), 'category')
self.assertEqual(find_common_type([dtype, dtype]), 'category')
self.assertEqual(find_common_type([np.object, dtype]), np.object)
assert find_common_type([dtype]) == 'category'
assert find_common_type([dtype, dtype]) == 'category'
assert find_common_type([np.object, dtype]) == np.object

def test_datetimetz_dtype(self):
dtype = DatetimeTZDtype(unit='ns', tz='US/Eastern')
self.assertEqual(find_common_type([dtype, dtype]),
'datetime64[ns, US/Eastern]')
assert find_common_type([dtype, dtype]) == 'datetime64[ns, US/Eastern]'

for dtype2 in [DatetimeTZDtype(unit='ns', tz='Asia/Tokyo'),
np.dtype('datetime64[ns]'), np.object, np.int64]:
self.assertEqual(find_common_type([dtype, dtype2]), np.object)
self.assertEqual(find_common_type([dtype2, dtype]), np.object)
assert find_common_type([dtype, dtype2]) == np.object
assert find_common_type([dtype2, dtype]) == np.object

def test_period_dtype(self):
dtype = PeriodDtype(freq='D')
self.assertEqual(find_common_type([dtype, dtype]), 'period[D]')
assert find_common_type([dtype, dtype]) == 'period[D]'

for dtype2 in [DatetimeTZDtype(unit='ns', tz='Asia/Tokyo'),
PeriodDtype(freq='2D'), PeriodDtype(freq='H'),
np.dtype('datetime64[ns]'), np.object, np.int64]:
self.assertEqual(find_common_type([dtype, dtype2]), np.object)
self.assertEqual(find_common_type([dtype2, dtype]), np.object)
assert find_common_type([dtype, dtype2]) == np.object
assert find_common_type([dtype2, dtype]) == np.object
16 changes: 8 additions & 8 deletions pandas/tests/dtypes/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,30 +30,30 @@ def test_invalid_dtype_error(self):

def test_numpy_dtype(self):
for dtype in ['M8[ns]', 'm8[ns]', 'object', 'float64', 'int64']:
self.assertEqual(pandas_dtype(dtype), np.dtype(dtype))
assert pandas_dtype(dtype) == np.dtype(dtype)

def test_numpy_string_dtype(self):
# do not parse freq-like string as period dtype
self.assertEqual(pandas_dtype('U'), np.dtype('U'))
self.assertEqual(pandas_dtype('S'), np.dtype('S'))
assert pandas_dtype('U') == np.dtype('U')
assert pandas_dtype('S') == np.dtype('S')

def test_datetimetz_dtype(self):
for dtype in ['datetime64[ns, US/Eastern]',
'datetime64[ns, Asia/Tokyo]',
'datetime64[ns, UTC]']:
assert pandas_dtype(dtype) is DatetimeTZDtype(dtype)
self.assertEqual(pandas_dtype(dtype), DatetimeTZDtype(dtype))
self.assertEqual(pandas_dtype(dtype), dtype)
assert pandas_dtype(dtype) == DatetimeTZDtype(dtype)
assert pandas_dtype(dtype) == dtype

def test_categorical_dtype(self):
self.assertEqual(pandas_dtype('category'), CategoricalDtype())
assert pandas_dtype('category') == CategoricalDtype()

def test_period_dtype(self):
for dtype in ['period[D]', 'period[3M]', 'period[U]',
'Period[D]', 'Period[3M]', 'Period[U]']:
assert pandas_dtype(dtype) is PeriodDtype(dtype)
self.assertEqual(pandas_dtype(dtype), PeriodDtype(dtype))
self.assertEqual(pandas_dtype(dtype), dtype)
assert pandas_dtype(dtype) == PeriodDtype(dtype)
assert pandas_dtype(dtype) == dtype


dtypes = dict(datetime_tz=pandas_dtype('datetime64[ns, US/Eastern]'),
Expand Down
Loading