Skip to content

MAINT: Rename assertRaisesRegexp to assert_raises_regex #16119

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 26, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 24 additions & 22 deletions pandas/tests/computation/test_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,8 @@
import pandas.core.computation.expr as expr
import pandas.util.testing as tm
from pandas.util.testing import (assert_frame_equal, randbool,
assertRaisesRegexp, assert_numpy_array_equal,
assert_produces_warning, assert_series_equal,
slow)
assert_numpy_array_equal, assert_series_equal,
assert_produces_warning, slow)
from pandas.compat import PY3, reduce

_series_frame_incompatible = _bool_ops_syms
Expand Down Expand Up @@ -1677,17 +1676,17 @@ def test_result_types2(self):

def test_undefined_func(self):
df = DataFrame({'a': np.random.randn(10)})
with tm.assertRaisesRegexp(ValueError,
"\"mysin\" is not a supported function"):
with tm.assert_raises_regex(
ValueError, "\"mysin\" is not a supported function"):
df.eval("mysin(a)",
engine=self.engine,
parser=self.parser)

def test_keyword_arg(self):
df = DataFrame({'a': np.random.randn(10)})
with tm.assertRaisesRegexp(TypeError,
"Function \"sin\" does not support "
"keyword arguments"):
with tm.assert_raises_regex(TypeError,
"Function \"sin\" does not support "
"keyword arguments"):
df.eval("sin(x=a)",
engine=self.engine,
parser=self.parser)
Expand Down Expand Up @@ -1748,16 +1747,16 @@ def test_no_new_globals(self, engine, parser):

def test_invalid_engine():
tm.skip_if_no_ne()
assertRaisesRegexp(KeyError, 'Invalid engine \'asdf\' passed',
pd.eval, 'x + y', local_dict={'x': 1, 'y': 2},
engine='asdf')
tm.assert_raises_regex(KeyError, 'Invalid engine \'asdf\' passed',
pd.eval, 'x + y', local_dict={'x': 1, 'y': 2},
engine='asdf')


def test_invalid_parser():
tm.skip_if_no_ne()
assertRaisesRegexp(KeyError, 'Invalid parser \'asdf\' passed',
pd.eval, 'x + y', local_dict={'x': 1, 'y': 2},
parser='asdf')
tm.assert_raises_regex(KeyError, 'Invalid parser \'asdf\' passed',
pd.eval, 'x + y', local_dict={'x': 1, 'y': 2},
parser='asdf')


_parsers = {'python': PythonExprVisitor, 'pytables': pytables.ExprVisitor,
Expand Down Expand Up @@ -1795,18 +1794,20 @@ def test_invalid_local_variable_reference(engine, parser):

for _expr in exprs:
if parser != 'pandas':
with tm.assertRaisesRegexp(SyntaxError, "The '@' prefix is only"):
with tm.assert_raises_regex(SyntaxError,
"The '@' prefix is only"):
pd.eval(_expr, engine=engine, parser=parser)
else:
with tm.assertRaisesRegexp(SyntaxError, "The '@' prefix is not"):
with tm.assert_raises_regex(SyntaxError,
"The '@' prefix is not"):
pd.eval(_expr, engine=engine, parser=parser)


def test_numexpr_builtin_raises(engine, parser):
sin, dotted_line = 1, 2
if engine == 'numexpr':
with tm.assertRaisesRegexp(NumExprClobberingError,
'Variables in expression .+'):
with tm.assert_raises_regex(NumExprClobberingError,
'Variables in expression .+'):
pd.eval('sin + dotted_line', engine=engine, parser=parser)
else:
res = pd.eval('sin + dotted_line', engine=engine, parser=parser)
Expand All @@ -1815,20 +1816,21 @@ def test_numexpr_builtin_raises(engine, parser):

def test_bad_resolver_raises(engine, parser):
cannot_resolve = 42, 3.0
with tm.assertRaisesRegexp(TypeError, 'Resolver of type .+'):
with tm.assert_raises_regex(TypeError, 'Resolver of type .+'):
pd.eval('1 + 2', resolvers=cannot_resolve, engine=engine,
parser=parser)


def test_empty_string_raises(engine, parser):
# GH 13139
with tm.assertRaisesRegexp(ValueError, 'expr cannot be an empty string'):
with tm.assert_raises_regex(ValueError,
'expr cannot be an empty string'):
pd.eval('', engine=engine, parser=parser)


def test_more_than_one_expression_raises(engine, parser):
with tm.assertRaisesRegexp(SyntaxError,
'only a single expression is allowed'):
with tm.assert_raises_regex(SyntaxError,
'only a single expression is allowed'):
pd.eval('1 + 1; 2 + 2', engine=engine, parser=parser)


Expand Down
6 changes: 3 additions & 3 deletions pandas/tests/dtypes/test_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -257,7 +257,7 @@ def test_maybe_convert_numeric_infinities(self):
tm.assert_numpy_array_equal(out, pos)

# too many characters
with tm.assertRaisesRegexp(ValueError, msg):
with tm.assert_raises_regex(ValueError, msg):
lib.maybe_convert_numeric(
np.array(['foo_' + infinity], dtype=object),
na_values, maybe_int)
Expand Down Expand Up @@ -320,7 +320,7 @@ def test_convert_numeric_uint64_nan(self):
for coerce in (True, False):
for arr, na_values in cases:
if coerce:
with tm.assertRaisesRegexp(ValueError, msg):
with tm.assert_raises_regex(ValueError, msg):
lib.maybe_convert_numeric(arr, na_values,
coerce_numeric=coerce)
else:
Expand All @@ -339,7 +339,7 @@ def test_convert_numeric_int64_uint64(self):
for coerce in (True, False):
for case in cases:
if coerce:
with tm.assertRaisesRegexp(ValueError, msg):
with tm.assert_raises_regex(ValueError, msg):
lib.maybe_convert_numeric(case, set(),
coerce_numeric=coerce)
else:
Expand Down
14 changes: 7 additions & 7 deletions pandas/tests/frame/test_alter_axes.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,7 @@
is_interval_dtype)
import pandas as pd

from pandas.util.testing import (assert_series_equal,
assert_frame_equal,
assertRaisesRegexp)
from pandas.util.testing import assert_series_equal, assert_frame_equal

import pandas.util.testing as tm

Expand All @@ -36,7 +34,7 @@ def test_set_index(self):
_ = self.mixed_frame['foo'] # noqa
self.mixed_frame.index = idx
assert self.mixed_frame['foo'].index is idx
with assertRaisesRegexp(ValueError, 'Length mismatch'):
with tm.assert_raises_regex(ValueError, 'Length mismatch'):
self.mixed_frame.index = idx[::2]

def test_set_index_cast(self):
Expand Down Expand Up @@ -111,7 +109,8 @@ def test_set_index2(self):
assert_frame_equal(df3, expected_nodrop)

# corner case
with assertRaisesRegexp(ValueError, 'Index has duplicate keys'):
with tm.assert_raises_regex(ValueError,
'Index has duplicate keys'):
df.set_index('A', verify_integrity=True)

# append
Expand All @@ -136,7 +135,8 @@ def test_set_index_nonuniq(self):
'C': ['a', 'b', 'c', 'd', 'e'],
'D': np.random.randn(5),
'E': np.random.randn(5)})
with assertRaisesRegexp(ValueError, 'Index has duplicate keys'):
with tm.assert_raises_regex(ValueError,
'Index has duplicate keys'):
df.set_index('A', verify_integrity=True, inplace=True)
assert 'A' in df

Expand Down Expand Up @@ -338,7 +338,7 @@ def test_set_index_empty_column(self):
def test_set_columns(self):
cols = Index(np.arange(len(self.mixed_frame.columns)))
self.mixed_frame.columns = cols
with assertRaisesRegexp(ValueError, 'Length mismatch'):
with tm.assert_raises_regex(ValueError, 'Length mismatch'):
self.mixed_frame.columns = cols[::2]

def test_dti_set_index_reindex(self):
Expand Down
13 changes: 7 additions & 6 deletions pandas/tests/frame/test_analytics.py
Original file line number Diff line number Diff line change
Expand Up @@ -779,7 +779,7 @@ def wrapper(x):
# assert_series_equal(result, comp)

# bad axis
tm.assertRaisesRegexp(ValueError, 'No axis named 2', f, axis=2)
tm.assert_raises_regex(ValueError, 'No axis named 2', f, axis=2)
# make sure works on mixed-type frame
getattr(self.mixed_frame, name)(axis=0)
getattr(self.mixed_frame, name)(axis=1)
Expand Down Expand Up @@ -1749,7 +1749,7 @@ def test_numpy_round(self):
tm.assert_frame_equal(out, expected)

msg = "the 'out' parameter is not supported"
with tm.assertRaisesRegexp(ValueError, msg):
with tm.assert_raises_regex(ValueError, msg):
np.round(df, decimals=0, out=df)

def test_round_mixed_type(self):
Expand Down Expand Up @@ -1897,7 +1897,8 @@ def test_dot(self):
exp = a.dot(a.iloc[0])
tm.assert_series_equal(result, exp)

with tm.assertRaisesRegexp(ValueError, 'Dot product shape mismatch'):
with tm.assert_raises_regex(ValueError,
'Dot product shape mismatch'):
a.dot(row[:-1])

a = np.random.rand(1, 5)
Expand All @@ -1914,7 +1915,7 @@ def test_dot(self):
df = DataFrame(randn(3, 4), index=[1, 2, 3], columns=lrange(4))
df2 = DataFrame(randn(5, 3), index=lrange(5), columns=[1, 2, 3])

with tm.assertRaisesRegexp(ValueError, 'aligned'):
with tm.assert_raises_regex(ValueError, 'aligned'):
df.dot(df2)


Expand Down Expand Up @@ -1986,7 +1987,7 @@ def test_n(self, df_strings, method, n, order):

error_msg = self.dtype_error_msg_template.format(
column='b', method=method, dtype='object')
with tm.assertRaisesRegexp(TypeError, error_msg):
with tm.assert_raises_regex(TypeError, error_msg):
getattr(df, method)(n, order)
else:
ascending = method == 'nsmallest'
Expand All @@ -2003,7 +2004,7 @@ def test_n_error(self, df_main_dtypes, method, columns):
df = df_main_dtypes
error_msg = self.dtype_error_msg_template.format(
column=columns[1], method=method, dtype=df[columns[1]].dtype)
with tm.assertRaisesRegexp(TypeError, error_msg):
with tm.assert_raises_regex(TypeError, error_msg):
getattr(df, method)(2, columns)

def test_n_all_dtypes(self, df_main_dtypes):
Expand Down
16 changes: 9 additions & 7 deletions pandas/tests/frame/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,7 @@

from pandas.util.testing import (assert_almost_equal,
assert_series_equal,
assert_frame_equal,
assertRaisesRegexp)
assert_frame_equal)

import pandas.util.testing as tm

Expand Down Expand Up @@ -91,11 +90,14 @@ def test_get_axis(self):
assert f._get_axis(0) is f.index
assert f._get_axis(1) is f.columns

assertRaisesRegexp(ValueError, 'No axis named', f._get_axis_number, 2)
assertRaisesRegexp(ValueError, 'No axis.*foo', f._get_axis_name, 'foo')
assertRaisesRegexp(ValueError, 'No axis.*None', f._get_axis_name, None)
assertRaisesRegexp(ValueError, 'No axis named', f._get_axis_number,
None)
tm.assert_raises_regex(
ValueError, 'No axis named', f._get_axis_number, 2)
tm.assert_raises_regex(
ValueError, 'No axis.*foo', f._get_axis_name, 'foo')
tm.assert_raises_regex(
ValueError, 'No axis.*None', f._get_axis_name, None)
tm.assert_raises_regex(ValueError, 'No axis named',
f._get_axis_number, None)

def test_keys(self):
getkeys = self.frame.keys
Expand Down
16 changes: 8 additions & 8 deletions pandas/tests/frame/test_axis_select_reindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -699,23 +699,23 @@ def test_filter(self):
tm.assert_frame_equal(filtered, expected)

# pass in None
with tm.assertRaisesRegexp(TypeError, 'Must pass'):
with tm.assert_raises_regex(TypeError, 'Must pass'):
self.frame.filter()
with tm.assertRaisesRegexp(TypeError, 'Must pass'):
with tm.assert_raises_regex(TypeError, 'Must pass'):
self.frame.filter(items=None)
with tm.assertRaisesRegexp(TypeError, 'Must pass'):
with tm.assert_raises_regex(TypeError, 'Must pass'):
self.frame.filter(axis=1)

# test mutually exclusive arguments
with tm.assertRaisesRegexp(TypeError, 'mutually exclusive'):
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], regex='e$', like='bbi')
with tm.assertRaisesRegexp(TypeError, 'mutually exclusive'):
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], regex='e$', axis=1)
with tm.assertRaisesRegexp(TypeError, 'mutually exclusive'):
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], regex='e$')
with tm.assertRaisesRegexp(TypeError, 'mutually exclusive'):
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], like='bbi', axis=0)
with tm.assertRaisesRegexp(TypeError, 'mutually exclusive'):
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], like='bbi')

# objects
Expand Down
5 changes: 2 additions & 3 deletions pandas/tests/frame/test_block_internals.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,7 @@

from pandas.util.testing import (assert_almost_equal,
assert_series_equal,
assert_frame_equal,
assertRaisesRegexp)
assert_frame_equal)

import pandas.util.testing as tm

Expand Down Expand Up @@ -481,7 +480,7 @@ def test_convert_objects(self):

# via astype, but errors
converted = self.mixed_frame.copy()
with assertRaisesRegexp(ValueError, 'invalid literal'):
with tm.assert_raises_regex(ValueError, 'invalid literal'):
converted['H'].astype('int32')

# mixed in a single column
Expand Down
16 changes: 8 additions & 8 deletions pandas/tests/frame/test_combine_concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,7 @@
from pandas.tests.frame.common import TestData

import pandas.util.testing as tm
from pandas.util.testing import (assertRaisesRegexp,
assert_frame_equal,
assert_series_equal)
from pandas.util.testing import assert_frame_equal, assert_series_equal


class TestDataFrameConcatCommon(tm.TestCase, TestData):
Expand Down Expand Up @@ -78,11 +76,13 @@ def test_append_series_dict(self):
columns=['foo', 'bar', 'baz', 'qux'])

series = df.loc[4]
with assertRaisesRegexp(ValueError, 'Indexes have overlapping values'):
with tm.assert_raises_regex(ValueError,
'Indexes have overlapping values'):
df.append(series, verify_integrity=True)
series.name = None
with assertRaisesRegexp(TypeError, 'Can only append a Series if '
'ignore_index=True'):
with tm.assert_raises_regex(TypeError,
'Can only append a Series if '
'ignore_index=True'):
df.append(series, verify_integrity=True)

result = df.append(series[::-1], ignore_index=True)
Expand Down Expand Up @@ -270,7 +270,7 @@ def test_update_raise(self):

other = DataFrame([[2., nan],
[nan, 7]], index=[1, 3], columns=[1, 2])
with assertRaisesRegexp(ValueError, "Data overlaps"):
with tm.assert_raises_regex(ValueError, "Data overlaps"):
df.update(other, raise_conflict=True)

def test_update_from_non_df(self):
Expand Down Expand Up @@ -419,7 +419,7 @@ def test_concat_axis_parameter(self):
assert_frame_equal(concatted_1_series, expected_columns_series)

# Testing ValueError
with assertRaisesRegexp(ValueError, 'No axis named'):
with tm.assert_raises_regex(ValueError, 'No axis named'):
pd.concat([series1, series2], axis='something')

def test_concat_numerical_names(self):
Expand Down
Loading