Skip to content

TST: better testing of Series.nlargest/nsmallest #15902

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 45 additions & 11 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from pandas.types.common import (is_unsigned_integer_dtype,
is_signed_integer_dtype,
is_integer_dtype,
is_complex_dtype,
is_categorical_dtype,
is_extension_type,
is_datetimetz,
Expand Down Expand Up @@ -40,6 +41,44 @@
from pandas._libs.tslib import iNaT


# --------------- #
# dtype access #
# --------------- #

def _ensure_data_view(values):
"""
helper routine to ensure that our data is of the correct
input dtype for lower-level routines

Parameters
----------
values : array-like
"""

if needs_i8_conversion(values):
values = values.view(np.int64)
elif is_period_arraylike(values):
from pandas.tseries.period import PeriodIndex
values = PeriodIndex(values).asi8
elif is_categorical_dtype(values):
values = values.values.codes
elif isinstance(values, (ABCSeries, ABCIndex)):
values = values.values

if is_signed_integer_dtype(values):
values = _ensure_int64(values)
elif is_unsigned_integer_dtype(values):
values = _ensure_uint64(values)
elif is_complex_dtype(values):
values = _ensure_float64(values)
elif is_float_dtype(values):
values = _ensure_float64(values)
else:
values = _ensure_object(values)

return values


# --------------- #
# top-level algos #
# --------------- #
Expand Down Expand Up @@ -867,9 +906,7 @@ def nsmallest(arr, n, keep='first'):
narr = len(arr)
n = min(n, narr)

sdtype = str(arr.dtype)
arr = arr.view(_dtype_map.get(sdtype, sdtype))

arr = _ensure_data_view(arr)
kth_val = algos.kth_smallest(arr.copy(), n - 1)
return _finalize_nsmallest(arr, kth_val, n, keep, narr)

Expand All @@ -880,8 +917,7 @@ def nlargest(arr, n, keep='first'):

Note: Fails silently with NaN.
"""
sdtype = str(arr.dtype)
arr = arr.view(_dtype_map.get(sdtype, sdtype))
arr = _ensure_data_view(arr)
return nsmallest(-arr, n, keep=keep)


Expand Down Expand Up @@ -910,9 +946,10 @@ def select_n_series(series, n, keep, method):
nordered : Series
"""
dtype = series.dtype
if not issubclass(dtype.type, (np.integer, np.floating, np.datetime64,
np.timedelta64)):
raise TypeError("Cannot use method %r with dtype %s" % (method, dtype))
if not ((is_numeric_dtype(dtype) and not is_complex_dtype(dtype)) or
needs_i8_conversion(dtype)):
raise TypeError("Cannot use method '{method}' with "
"dtype {dtype}".format(method=method, dtype=dtype))

if keep not in ('first', 'last'):
raise ValueError('keep must be either "first", "last"')
Expand Down Expand Up @@ -964,9 +1001,6 @@ def _finalize_nsmallest(arr, kth_val, n, keep, narr):
return inds


_dtype_map = {'datetime64[ns]': 'int64', 'timedelta64[ns]': 'int64'}


# ------- #
# helpers #
# ------- #
Expand Down
180 changes: 106 additions & 74 deletions pandas/tests/series/test_analytics.py
Original file line number Diff line number Diff line change
Expand Up @@ -1381,80 +1381,6 @@ def test_is_monotonic(self):
self.assertFalse(s.is_monotonic)
self.assertTrue(s.is_monotonic_decreasing)

def test_nsmallest_nlargest(self):
# float, int, datetime64 (use i8), timedelts64 (same),
# object that are numbers, object that are strings

base = [3, 2, 1, 2, 5]

s_list = [
Series(base, dtype='int8'),
Series(base, dtype='int16'),
Series(base, dtype='int32'),
Series(base, dtype='int64'),
Series(base, dtype='float32'),
Series(base, dtype='float64'),
Series(base, dtype='uint8'),
Series(base, dtype='uint16'),
Series(base, dtype='uint32'),
Series(base, dtype='uint64'),
Series(base).astype('timedelta64[ns]'),
Series(pd.to_datetime(['2003', '2002', '2001', '2002', '2005'])),
]

raising = [
Series([3., 2, 1, 2, '5'], dtype='object'),
Series([3., 2, 1, 2, 5], dtype='object'),
# not supported on some archs
# Series([3., 2, 1, 2, 5], dtype='complex256'),
Series([3., 2, 1, 2, 5], dtype='complex128'),
]

for r in raising:
dt = r.dtype
msg = "Cannot use method 'n(larg|small)est' with dtype %s" % dt
args = 2, len(r), 0, -1
methods = r.nlargest, r.nsmallest
for method, arg in product(methods, args):
with tm.assertRaisesRegexp(TypeError, msg):
method(arg)

for s in s_list:

assert_series_equal(s.nsmallest(2), s.iloc[[2, 1]])
assert_series_equal(s.nsmallest(2, keep='last'), s.iloc[[2, 3]])

empty = s.iloc[0:0]
assert_series_equal(s.nsmallest(0), empty)
assert_series_equal(s.nsmallest(-1), empty)
assert_series_equal(s.nlargest(0), empty)
assert_series_equal(s.nlargest(-1), empty)

assert_series_equal(s.nsmallest(len(s)), s.sort_values())
assert_series_equal(s.nsmallest(len(s) + 1), s.sort_values())
assert_series_equal(s.nlargest(len(s)), s.iloc[[4, 0, 1, 3, 2]])
assert_series_equal(s.nlargest(len(s) + 1),
s.iloc[[4, 0, 1, 3, 2]])

s = Series([3., np.nan, 1, 2, 5])
assert_series_equal(s.nlargest(), s.iloc[[4, 0, 3, 2]])
assert_series_equal(s.nsmallest(), s.iloc[[2, 3, 0, 4]])

msg = 'keep must be either "first", "last"'
with tm.assertRaisesRegexp(ValueError, msg):
s.nsmallest(keep='invalid')
with tm.assertRaisesRegexp(ValueError, msg):
s.nlargest(keep='invalid')

# GH 13412
s = Series([1, 4, 3, 2], index=[0, 0, 1, 1])
result = s.nlargest(3)
expected = s.sort_values(ascending=False).head(3)
assert_series_equal(result, expected)
result = s.nsmallest(3)
expected = s.sort_values().head(3)
assert_series_equal(result, expected)

def test_sort_index_level(self):
mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC'))
s = Series([1, 2], mi)
Expand Down Expand Up @@ -1729,3 +1655,109 @@ def test_value_counts_categorical_not_ordered(self):
index=exp_idx, name='xxx')
tm.assert_series_equal(s.value_counts(normalize=True), exp)
tm.assert_series_equal(idx.value_counts(normalize=True), exp)


@pytest.fixture
def s_main_dtypes():
df = pd.DataFrame(
{'datetime': pd.to_datetime(['2003', '2002',
'2001', '2002',
'2005']),
'datetimetz': pd.to_datetime(
['2003', '2002',
'2001', '2002',
'2005']).tz_localize('US/Eastern'),
'timedelta': pd.to_timedelta(['3d', '2d', '1d',
'2d', '5d'])})

for dtype in ['int8', 'int16', 'int32', 'int64',
'float32', 'float64',
'uint8', 'uint16', 'uint32', 'uint64']:
df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype)

return df


class TestNLargestNSmallest(object):

@pytest.mark.parametrize(
"r", [Series([3., 2, 1, 2, '5'], dtype='object'),
Series([3., 2, 1, 2, 5], dtype='object'),
# not supported on some archs
# Series([3., 2, 1, 2, 5], dtype='complex256'),
Series([3., 2, 1, 2, 5], dtype='complex128'),
Series(list('abcde'), dtype='category'),
Series(list('abcde'))])
def test_error(self, r):
dt = r.dtype
msg = ("Cannot use method 'n(larg|small)est' with "
"dtype {dt}".format(dt=dt))
args = 2, len(r), 0, -1
methods = r.nlargest, r.nsmallest
for method, arg in product(methods, args):
with tm.assertRaisesRegexp(TypeError, msg):
method(arg)

@pytest.mark.parametrize(
"s",
[v for k, v in s_main_dtypes().iteritems()])
def test_nsmallest_nlargest(self, s):
# float, int, datetime64 (use i8), timedelts64 (same),
# object that are numbers, object that are strings

assert_series_equal(s.nsmallest(2), s.iloc[[2, 1]])
assert_series_equal(s.nsmallest(2, keep='last'), s.iloc[[2, 3]])

empty = s.iloc[0:0]
assert_series_equal(s.nsmallest(0), empty)
assert_series_equal(s.nsmallest(-1), empty)
assert_series_equal(s.nlargest(0), empty)
assert_series_equal(s.nlargest(-1), empty)

assert_series_equal(s.nsmallest(len(s)), s.sort_values())
assert_series_equal(s.nsmallest(len(s) + 1), s.sort_values())
assert_series_equal(s.nlargest(len(s)), s.iloc[[4, 0, 1, 3, 2]])
assert_series_equal(s.nlargest(len(s) + 1),
s.iloc[[4, 0, 1, 3, 2]])

def test_misc(self):

s = Series([3., np.nan, 1, 2, 5])
assert_series_equal(s.nlargest(), s.iloc[[4, 0, 3, 2]])
assert_series_equal(s.nsmallest(), s.iloc[[2, 3, 0, 4]])

msg = 'keep must be either "first", "last"'
with tm.assertRaisesRegexp(ValueError, msg):
s.nsmallest(keep='invalid')
with tm.assertRaisesRegexp(ValueError, msg):
s.nlargest(keep='invalid')

# GH 15297
s = Series([1] * 5, index=[1, 2, 3, 4, 5])
expected_first = Series([1] * 3, index=[1, 2, 3])
expected_last = Series([1] * 3, index=[5, 4, 3])

result = s.nsmallest(3)
assert_series_equal(result, expected_first)

result = s.nsmallest(3, keep='last')
assert_series_equal(result, expected_last)

result = s.nlargest(3)
assert_series_equal(result, expected_first)

result = s.nlargest(3, keep='last')
assert_series_equal(result, expected_last)

@pytest.mark.parametrize('n', range(1, 5))
def test_n(self, n):

# GH 13412
s = Series([1, 4, 3, 2], index=[0, 0, 1, 1])
result = s.nlargest(n)
expected = s.sort_values(ascending=False).head(n)
assert_series_equal(result, expected)

result = s.nsmallest(n)
expected = s.sort_values().head(n)
assert_series_equal(result, expected)