Skip to content

CLN: remove build some warnings #15259

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 18 additions & 29 deletions pandas/parser.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -716,11 +716,10 @@ cdef class TextReader:
# header is now a list of lists, so field_count should use header[0]

cdef:
size_t i, start, data_line, field_count, passed_count, hr, unnamed_count # noqa
Py_ssize_t i, start, field_count, passed_count, unnamed_count # noqa
char *word
object name
int status
Py_ssize_t size
int status, hr, data_line
char *errors = "strict"
cdef StringPath path = _string_path(self.c_encoding)

Expand Down Expand Up @@ -1416,8 +1415,7 @@ cdef _string_box_factorize(parser_t *parser, int col,
bint na_filter, kh_str_t *na_hashset):
cdef:
int error, na_count = 0
Py_ssize_t i
size_t lines
Py_ssize_t i, lines
coliter_t it
const char *word = NULL
ndarray[object] result
Expand Down Expand Up @@ -1470,8 +1468,7 @@ cdef _string_box_utf8(parser_t *parser, int col,
bint na_filter, kh_str_t *na_hashset):
cdef:
int error, na_count = 0
Py_ssize_t i
size_t lines
Py_ssize_t i, lines
coliter_t it
const char *word = NULL
ndarray[object] result
Expand Down Expand Up @@ -1525,8 +1522,7 @@ cdef _string_box_decode(parser_t *parser, int col,
char *encoding):
cdef:
int error, na_count = 0
Py_ssize_t i, size
size_t lines
Py_ssize_t i, size, lines
coliter_t it
const char *word = NULL
ndarray[object] result
Expand Down Expand Up @@ -1586,8 +1582,7 @@ cdef _categorical_convert(parser_t *parser, int col,
"Convert column data into codes, categories"
cdef:
int error, na_count = 0
Py_ssize_t i, size
size_t lines
Py_ssize_t i, size, lines
coliter_t it
const char *word = NULL

Expand Down Expand Up @@ -1691,7 +1686,7 @@ cdef _try_double(parser_t *parser, int col, int line_start, int line_end,
bint na_filter, kh_str_t *na_hashset, object na_flist):
cdef:
int error, na_count = 0
size_t i, lines
Py_ssize_t i, lines
coliter_t it
const char *word = NULL
char *p_end
Expand Down Expand Up @@ -1738,8 +1733,7 @@ cdef inline int _try_double_nogil(parser_t *parser,
int *na_count) nogil:
cdef:
int error,
size_t i
size_t lines = line_end - line_start
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
char *p_end
Expand Down Expand Up @@ -1801,7 +1795,7 @@ cdef _try_uint64(parser_t *parser, int col, int line_start, int line_end,
bint na_filter, kh_str_t *na_hashset):
cdef:
int error
size_t i, lines
Py_ssize_t i, lines
coliter_t it
uint64_t *data
ndarray result
Expand Down Expand Up @@ -1837,8 +1831,7 @@ cdef inline int _try_uint64_nogil(parser_t *parser, int col, int line_start,
uint64_t *data, uint_state *state) nogil:
cdef:
int error
size_t i
size_t lines = line_end - line_start
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
khiter_t k
Expand Down Expand Up @@ -1873,7 +1866,7 @@ cdef _try_int64(parser_t *parser, int col, int line_start, int line_end,
bint na_filter, kh_str_t *na_hashset):
cdef:
int error, na_count = 0
size_t i, lines
Py_ssize_t i, lines
coliter_t it
int64_t *data
ndarray result
Expand Down Expand Up @@ -1902,8 +1895,7 @@ cdef inline int _try_int64_nogil(parser_t *parser, int col, int line_start,
int64_t *data, int *na_count) nogil:
cdef:
int error
size_t i
size_t lines = line_end - line_start
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
khiter_t k
Expand Down Expand Up @@ -1939,7 +1931,7 @@ cdef _try_bool(parser_t *parser, int col, int line_start, int line_end,
bint na_filter, kh_str_t *na_hashset):
cdef:
int na_count
size_t lines = line_end - line_start
Py_ssize_t lines = line_end - line_start
uint8_t *data
cnp.ndarray[cnp.uint8_t, ndim=1] result

Expand All @@ -1963,8 +1955,7 @@ cdef inline int _try_bool_nogil(parser_t *parser, int col, int line_start,
uint8_t *data, int *na_count) nogil:
cdef:
int error
size_t lines = line_end - line_start
size_t i
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
khiter_t k
Expand Down Expand Up @@ -2004,7 +1995,7 @@ cdef _try_bool_flex(parser_t *parser, int col, int line_start, int line_end,
const kh_str_t *false_hashset):
cdef:
int error, na_count = 0
size_t i, lines
Py_ssize_t i, lines
coliter_t it
const char *word = NULL
uint8_t *data
Expand Down Expand Up @@ -2033,8 +2024,7 @@ cdef inline int _try_bool_flex_nogil(parser_t *parser, int col, int line_start,
int *na_count) nogil:
cdef:
int error = 0
size_t i
size_t lines = line_end - line_start
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
khiter_t k
Expand Down Expand Up @@ -2249,8 +2239,7 @@ cdef _apply_converter(object f, parser_t *parser, int col,
char* c_encoding):
cdef:
int error
Py_ssize_t i
size_t lines
Py_ssize_t i, lines
coliter_t it
const char *word = NULL
char *errors = "strict"
Expand Down Expand Up @@ -2341,7 +2330,7 @@ def _to_structured_array(dict columns, object names, object usecols):
cdef _fill_structured_column(char *dst, char* src, int elsize,
int stride, int length, bint incref):
cdef:
size_t i
Py_ssize_t i

if incref:
util.transfer_object_column(dst, src, stride, length)
Expand Down
53 changes: 45 additions & 8 deletions pandas/src/algos_groupby_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -361,7 +361,11 @@ def group_last_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
val = values[i, j]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, j] += 1
resx[lab, j] = val

Expand Down Expand Up @@ -407,7 +411,11 @@ def group_nth_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
val = values[i, j]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, j] += 1
if nobs[lab, j] == rank:
resx[lab, j] = val
Expand Down Expand Up @@ -478,7 +486,11 @@ def group_max_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
val = values[i, j]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, j] += 1
if val > maxx[lab, j]:
maxx[lab, j] = val
Expand All @@ -492,7 +504,11 @@ def group_max_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
val = values[i, 0]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, 0] += 1
if val > maxx[lab, 0]:
maxx[lab, 0] = val
Expand Down Expand Up @@ -541,8 +557,11 @@ def group_min_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
val = values[i, j]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:

{{endif}}
nobs[lab, j] += 1
if val < minx[lab, j]:
minx[lab, j] = val
Expand All @@ -556,7 +575,11 @@ def group_min_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
val = values[i, 0]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, 0] += 1
if val < minx[lab, 0]:
minx[lab, 0] = val
Expand Down Expand Up @@ -596,14 +619,19 @@ def group_cummin_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
continue
for j in range(K):
val = values[i, j]

# val = nan
{{if name == 'int64'}}
if is_datetimelike and val == {{nan_val}}:
out[i, j] = {{nan_val}}
else:
{{else}}
if val == val:
{{endif}}
if val < accum[lab, j]:
min_val = val
accum[lab, j] = min_val
out[i, j] = accum[lab, j]
# val = nan
elif is_datetimelike:
out[i, j] = {{nan_val}}


@cython.boundscheck(False)
Expand Down Expand Up @@ -633,14 +661,18 @@ def group_cummax_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
continue
for j in range(K):
val = values[i, j]

{{if name == 'int64'}}
if is_datetimelike and val == {{nan_val}}:
out[i, j] = {{nan_val}}
else:
{{else}}
if val == val:
{{endif}}
if val > accum[lab, j]:
max_val = val
accum[lab, j] = max_val
out[i, j] = accum[lab, j]
# val = nan
elif is_datetimelike:
out[i, j] = {{nan_val}}

{{endfor}}

Expand Down Expand Up @@ -738,7 +770,12 @@ def group_cumsum(numeric[:, :] out,
continue
for j in range(K):
val = values[i, j]
if val == val:

if numeric == float32_t or numeric == float64_t:
if val == val:
accum[lab, j] += val
out[i, j] = accum[lab, j]
else:
accum[lab, j] += val
out[i, j] = accum[lab, j]

Expand Down
8 changes: 1 addition & 7 deletions pandas/src/algos_rank_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -175,11 +175,7 @@ def rank_1d_{{dtype}}(object in_arr, ties_method='average', ascending=True,

count += 1.0

{{if dtype == 'float64'}}
if i == n - 1 or sorted_data[i + 1] != val:
{{else}}
if i == n - 1 or fabs(sorted_data[i + 1] - val) > 0:
{{endif}}
if tiebreak == TIEBREAK_AVERAGE:
for j in range(i - dups + 1, i + 1):
ranks[argsorted[j]] = sum_ranks / dups
Expand Down Expand Up @@ -345,10 +341,8 @@ def rank_2d_{{dtype}}(object in_arr, axis=0, ties_method='average',

{{if dtype == 'object'}}
if j == k - 1 or are_diff(values[i, j + 1], val):
{{elif dtype == 'float64'}}
if j == k - 1 or values[i, j + 1] != val:
{{else}}
if j == k - 1 or fabs(values[i, j + 1] - val) > FP_ERR:
if j == k - 1 or values[i, j + 1] != val:
{{endif}}
if tiebreak == TIEBREAK_AVERAGE:
for z in range(j - dups + 1, j + 1):
Expand Down
2 changes: 2 additions & 0 deletions pandas/src/hashtable_class_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -386,9 +386,11 @@ cdef class {{name}}HashTable(HashTable):
val = values[i]

# specific for groupby
{{if dtype != 'uint64'}}
if val < 0:
labels[i] = -1
continue
{{endif}}

k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
Expand Down
13 changes: 9 additions & 4 deletions pandas/src/hashtable_func_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,12 @@ cdef build_count_table_{{dtype}}({{dtype}}_t[:] values,

for i in range(n):
val = values[i]

{{if dtype == 'float64'}}
if val == val or not dropna:
{{else}}
if True:
{{endif}}
k = kh_get_{{ttype}}(table, val)
if k != table.n_buckets:
table.vals[k] += 1
Expand All @@ -85,7 +90,7 @@ cpdef value_count_{{dtype}}({{dtype}}_t[:] values, bint dropna):
int64_t[:] result_counts
{{endif}}

int k
Py_ssize_t k

table = kh_init_{{ttype}}()
{{if dtype == 'object'}}
Expand Down Expand Up @@ -133,11 +138,11 @@ def duplicated_{{dtype}}(ndarray[{{dtype}}] values, object keep='first'):
def duplicated_{{dtype}}({{dtype}}_t[:] values, object keep='first'):
{{endif}}
cdef:
int ret = 0, k
int ret = 0
{{if dtype != 'object'}}
{{dtype}}_t value
{{endif}}
Py_ssize_t i, n = len(values)
Py_ssize_t k, i, n = len(values)
kh_{{ttype}}_t * table = kh_init_{{ttype}}()
ndarray[uint8_t, ndim=1, cast=True] out = np.empty(n, dtype='bool')

Expand Down Expand Up @@ -230,7 +235,7 @@ def mode_{{dtype}}({{ctype}}[:] values):
cdef:
int count, max_count = 2
int j = -1 # so you can do +=
int k
Py_ssize_t k
kh_{{table_type}}_t *table
ndarray[{{ctype}}] modes

Expand Down
2 changes: 1 addition & 1 deletion pandas/src/parser/io.c
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ void *buffer_mmap_bytes(void *source, size_t nbytes, size_t *bytes_read,

retval = src->memmap + src->position;

if (src->position + nbytes > src->last_pos) {
if (src->position + (off_t)nbytes > src->last_pos) {
// fewer than nbytes remaining
*bytes_read = src->last_pos - src->position;
} else {
Expand Down
Loading