Skip to content

Steal the algorithm used to combine hashes from tupleobject.c #15227

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 37 additions & 21 deletions pandas/tools/hashing.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""
data hash pandas / numpy objects
"""
import itertools

import numpy as np
from pandas import _hash, Series, factorize, Categorical, Index
Expand All @@ -13,6 +14,22 @@
_default_hash_key = '0123456789123456'


def _combine_hash_arrays(arrays, num_items):
"Should be the same as CPython's tupleobject.c"
first = next(arrays)
arrays = itertools.chain([first], arrays)

mult = np.zeros_like(first) + np.uint64(1000003)
out = np.zeros_like(first) + np.uint64(0x345678)
for i, a in enumerate(arrays):
inverse_i = num_items - i
out ^= a
out *= mult
mult += np.uint64(82520 + inverse_i + inverse_i)
assert i+1 == num_items, 'Fed in wrong num_items'
out += np.uint64(97531)
return out

def hash_pandas_object(obj, index=True, encoding='utf8', hash_key=None,
categorize=True):
"""
Expand Down Expand Up @@ -41,10 +58,6 @@ def hash_pandas_object(obj, index=True, encoding='utf8', hash_key=None,
if hash_key is None:
hash_key = _default_hash_key

def adder(h, hashed_to_add):
h = np.multiply(h, np.uint(3), h)
return np.add(h, hashed_to_add, h)

if isinstance(obj, ABCIndexClass):
h = hash_array(obj.values, encoding, hash_key,
categorize).astype('uint64')
Expand All @@ -53,26 +66,29 @@ def adder(h, hashed_to_add):
h = hash_array(obj.values, encoding, hash_key,
categorize).astype('uint64')
if index:
h = adder(h, hash_pandas_object(obj.index,
index=False,
encoding=encoding,
hash_key=hash_key,
categorize=categorize).values)
index_iter = (hash_pandas_object(obj.index,
index=False,
encoding=encoding,
hash_key=hash_key,
categorize=categorize).values
for _ in [None])
arrays = itertools.chain([h], index_iter)
h = _combine_hash_arrays(arrays, 2)

h = Series(h, index=obj.index, dtype='uint64')
elif isinstance(obj, ABCDataFrame):
cols = obj.iteritems()
first_series = next(cols)[1]
h = hash_array(first_series.values, encoding,
hash_key, categorize).astype('uint64')
for _, col in cols:
h = adder(h, hash_array(col.values, encoding, hash_key,
categorize))
hashes = (hash_array(series.values) for _, series in obj.iteritems())
num_items = len(obj.columns)
if index:
h = adder(h, hash_pandas_object(obj.index,
index=False,
encoding=encoding,
hash_key=hash_key,
categorize=categorize).values)
index_hash_generator = (hash_pandas_object(obj.index,
index=False,
encoding=encoding,
hash_key=hash_key,
categorize=categorize).values
for _ in [None])
num_items += 1
hashes = itertools.chain(hashes, index_hash_generator)
h = _combine_hash_arrays(hashes, num_items)

h = Series(h, index=obj.index, dtype='uint64')
else:
Expand Down