Skip to content

BUG: select_dtypes now allows 'datetimetz' for generically selecting datetimes with timezones #14910

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 19, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v0.20.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@ Other enhancements
- ``pd.Series.interpolate`` now supports timedelta as an index type with ``method='time'`` (:issue:`6424`)
- ``pandas.io.json.json_normalize()`` gained the option ``errors='ignore'|'raise'``; the default is ``errors='raise'`` which is backward compatible. (:issue:`14583`)

- ``.select_dtypes()`` now allows `datetimetz` to generically select datetimes with tz (:issue:`14910`)

.. _whatsnew_0200.api_breaking:

Expand Down Expand Up @@ -249,5 +250,4 @@ Bug Fixes




- Require at least 0.23 version of cython to avoid problems with character encodings (:issue:`14699`)
5 changes: 5 additions & 0 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -2257,7 +2257,12 @@ def select_dtypes(self, include=None, exclude=None):
this will return *all* object dtype columns
* See the `numpy dtype hierarchy
<http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
* To select datetimes, use np.datetime64, 'datetime' or 'datetime64'
* To select timedeltas, use np.timedelta64, 'timedelta' or
'timedelta64'
* To select Pandas categorical dtypes, use 'category'
* To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0),
or a 'datetime64[ns, tz]' string

Examples
--------
Expand Down
37 changes: 35 additions & 2 deletions pandas/tests/frame/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,15 +109,48 @@ def test_select_dtypes_include(self):
'c': np.arange(3, 6).astype('u1'),
'd': np.arange(4.0, 7.0, dtype='float64'),
'e': [True, False, True],
'f': pd.Categorical(list('abc'))})
'f': pd.Categorical(list('abc')),
'g': pd.date_range('20130101', periods=3),
'h': pd.date_range('20130101', periods=3,
tz='US/Eastern'),
'i': pd.date_range('20130101', periods=3,
tz='CET'),
'j': pd.period_range('2013-01', periods=3,
freq='M'),
'k': pd.timedelta_range('1 day', periods=3)})

ri = df.select_dtypes(include=[np.number])
ei = df[['b', 'c', 'd', 'k']]
assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=[np.number], exclude=['timedelta'])
ei = df[['b', 'c', 'd']]
assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=[np.number, 'category'])
ri = df.select_dtypes(include=[np.number, 'category'],
exclude=['timedelta'])
ei = df[['b', 'c', 'd', 'f']]
assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=['datetime'])
ei = df[['g']]
assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=['datetime64'])
ei = df[['g']]
assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=['datetimetz'])
ei = df[['h', 'i']]
assert_frame_equal(ri, ei)

ri = df.select_dtypes(include=['timedelta'])
ei = df[['k']]
assert_frame_equal(ri, ei)

self.assertRaises(NotImplementedError,
lambda: df.select_dtypes(include=['period']))

def test_select_dtypes_exclude(self):
df = DataFrame({'a': list('abc'),
'b': list(range(1, 4)),
Expand Down
5 changes: 5 additions & 0 deletions pandas/types/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -400,6 +400,11 @@ def _get_dtype_from_object(dtype):
pass
return dtype.type
elif isinstance(dtype, string_types):
if dtype in ['datetimetz', 'datetime64tz']:
return DatetimeTZDtype.type
elif dtype in ['period']:
raise NotImplementedError

if dtype == 'datetime' or dtype == 'timedelta':
dtype += '64'

Expand Down