Skip to content

BUG: Respect the dtype parameter for empty CSV #14717

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 24, 2016
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/source/whatsnew/v0.20.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -81,3 +81,5 @@ Performance Improvements

Bug Fixes
~~~~~~~~~

- Bug in ``pd.read_csv()`` in which the ``dtype`` parameter was not being respected for empty data (:issue:`14712`)
25 changes: 17 additions & 8 deletions pandas/io/parsers.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
is_float,
is_scalar)
from pandas.core.index import Index, MultiIndex, RangeIndex
from pandas.core.series import Series
from pandas.core.frame import DataFrame
from pandas.core.common import AbstractMethodError
from pandas.core.config import get_option
Expand Down Expand Up @@ -2791,27 +2792,35 @@ def _clean_index_names(columns, index_col):
def _get_empty_meta(columns, index_col, index_names, dtype=None):
columns = list(columns)

if dtype is None:
dtype = {}
# Convert `dtype` to a defaultdict of some kind.
# This will enable us to write `dtype[col_name]`
# without worrying about KeyError issues later on.
if not isinstance(dtype, dict):
# if dtype == None, default will be np.object.
default_dtype = dtype or np.object
dtype = defaultdict(lambda: default_dtype)
else:
if not isinstance(dtype, dict):
dtype = defaultdict(lambda: dtype)
# Save a copy of the dictionary.
_dtype = dtype.copy()
dtype = defaultdict(lambda: np.object)

# Convert column indexes to column names.
dtype = dict((columns[k] if is_integer(k) else k, v)
for k, v in compat.iteritems(dtype))
for k, v in compat.iteritems(_dtype):
col = columns[k] if is_integer(k) else k
dtype[col] = v

if index_col is None or index_col is False:
index = Index([])
else:
index = [np.empty(0, dtype=dtype.get(index_name, np.object))
index = [Series([], dtype=dtype[index_name])
for index_name in index_names]
index = MultiIndex.from_arrays(index, names=index_names)
index_col.sort()
for i, n in enumerate(index_col):
columns.pop(n - i)

col_dict = dict((col_name,
np.empty(0, dtype=dtype.get(col_name, np.object)))
Series([], dtype=dtype[col_name]))
for col_name in columns)

return index, columns, col_dict
Expand Down
46 changes: 46 additions & 0 deletions pandas/io/tests/parser/c_parser_only.py
Original file line number Diff line number Diff line change
Expand Up @@ -561,3 +561,49 @@ def test_internal_null_byte(self):

result = self.read_csv(StringIO(data), names=names)
tm.assert_frame_equal(result, expected)

def test_empty_dtype(self):
# see gh-14712
data = 'a,b'

expected = pd.DataFrame(columns=['a', 'b'], dtype=np.float64)
result = self.read_csv(StringIO(data), header=0, dtype=np.float64)
tm.assert_frame_equal(result, expected)

expected = pd.DataFrame({'a': pd.Categorical([]),
'b': pd.Categorical([])},
index=[])
result = self.read_csv(StringIO(data), header=0,
dtype='category')
tm.assert_frame_equal(result, expected)

expected = pd.DataFrame(columns=['a', 'b'], dtype='datetime64[ns]')
result = self.read_csv(StringIO(data), header=0,
dtype='datetime64[ns]')
tm.assert_frame_equal(result, expected)

expected = pd.DataFrame({'a': pd.Series([], dtype='timedelta64[ns]'),
'b': pd.Series([], dtype='timedelta64[ns]')},
index=[])
result = self.read_csv(StringIO(data), header=0,
dtype='timedelta64[ns]')
tm.assert_frame_equal(result, expected)

expected = pd.DataFrame(columns=['a', 'b'])
expected['a'] = expected['a'].astype(np.float64)
result = self.read_csv(StringIO(data), header=0,
dtype={'a': np.float64})
tm.assert_frame_equal(result, expected)

expected = pd.DataFrame(columns=['a', 'b'])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

for completeness, can you tests with timedelta/datetime/category as well.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yep, done.

expected['a'] = expected['a'].astype(np.float64)
result = self.read_csv(StringIO(data), header=0,
dtype={0: np.float64})
tm.assert_frame_equal(result, expected)

expected = pd.DataFrame(columns=['a', 'b'])
expected['a'] = expected['a'].astype(np.int32)
expected['b'] = expected['b'].astype(np.float64)
result = self.read_csv(StringIO(data), header=0,
dtype={'a': np.int32, 1: np.float64})
tm.assert_frame_equal(result, expected)