Skip to content

BUG: Series ops with object dtype may incorrectly fail #13072

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions doc/source/whatsnew/v0.18.2.txt
Original file line number Diff line number Diff line change
Expand Up @@ -132,3 +132,6 @@ Bug Fixes

- Bug in ``NaT`` - ``Period`` raises ``AttributeError`` (:issue:`13071`)
- Bug in ``Period`` addition raises ``TypeError`` if ``Period`` is on right hand side (:issue:`13069`)

- Bug in ``Series`` arithmetic raises ``TypeError`` if it contains datetime-like as ``object`` dtype (:issue:`13043`)

24 changes: 20 additions & 4 deletions pandas/core/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from pandas.tslib import iNaT
from pandas.compat import bind_method
import pandas.core.missing as missing
import pandas.algos as _algos
import pandas.core.algorithms as algos
from pandas.core.common import (is_list_like, notnull, isnull,
_values_from_object, _maybe_match_name,
Expand Down Expand Up @@ -600,6 +601,21 @@ def na_op(x, y):
result = missing.fill_zeros(result, x, y, name, fill_zeros)
return result

def safe_na_op(lvalues, rvalues):
try:
return na_op(lvalues, rvalues)
except Exception:
if isinstance(rvalues, ABCSeries):
if is_object_dtype(rvalues):
# if dtype is object, try elementwise op
return _algos.arrmap_object(rvalues,
lambda x: op(lvalues, x))
else:
if is_object_dtype(lvalues):
return _algos.arrmap_object(lvalues,
lambda x: op(x, rvalues))
raise

def wrapper(left, right, name=name, na_op=na_op):

if isinstance(right, pd.DataFrame):
Expand Down Expand Up @@ -638,17 +654,17 @@ def wrapper(left, right, name=name, na_op=na_op):
if ridx is not None:
rvalues = algos.take_1d(rvalues, ridx)

arr = na_op(lvalues, rvalues)

return left._constructor(wrap_results(arr), index=index,
result = wrap_results(safe_na_op(lvalues, rvalues))
return left._constructor(result, index=index,
name=name, dtype=dtype)
else:
# scalars
if (hasattr(lvalues, 'values') and
not isinstance(lvalues, pd.DatetimeIndex)):
lvalues = lvalues.values

return left._constructor(wrap_results(na_op(lvalues, rvalues)),
result = wrap_results(safe_na_op(lvalues, rvalues))
return left._constructor(result,
index=left.index, name=left.name,
dtype=dtype)

Expand Down
62 changes: 62 additions & 0 deletions pandas/tseries/tests/test_period.py
Original file line number Diff line number Diff line change
Expand Up @@ -4151,6 +4151,68 @@ def test_intercept_astype_object(self):
result = df.values.squeeze()
self.assertTrue((result[:, 0] == expected.values).all())

def test_ops_series_timedelta(self):
# GH 13043
s = pd.Series([pd.Period('2015-01-01', freq='D'),
pd.Period('2015-01-02', freq='D')], name='xxx')
self.assertEqual(s.dtype, object)

exp = pd.Series([pd.Period('2015-01-02', freq='D'),
pd.Period('2015-01-03', freq='D')], name='xxx')
tm.assert_series_equal(s + pd.Timedelta('1 days'), exp)
tm.assert_series_equal(pd.Timedelta('1 days') + s, exp)

tm.assert_series_equal(s + pd.tseries.offsets.Day(), exp)
tm.assert_series_equal(pd.tseries.offsets.Day() + s, exp)

def test_ops_series_period(self):
# GH 13043
s = pd.Series([pd.Period('2015-01-01', freq='D'),
pd.Period('2015-01-02', freq='D')], name='xxx')
self.assertEqual(s.dtype, object)

p = pd.Period('2015-01-10', freq='D')
# dtype will be object because of original dtype
exp = pd.Series([9, 8], name='xxx', dtype=object)
tm.assert_series_equal(p - s, exp)
tm.assert_series_equal(s - p, -exp)

s2 = pd.Series([pd.Period('2015-01-05', freq='D'),
pd.Period('2015-01-04', freq='D')], name='xxx')
self.assertEqual(s2.dtype, object)

exp = pd.Series([4, 2], name='xxx', dtype=object)
tm.assert_series_equal(s2 - s, exp)
tm.assert_series_equal(s - s2, -exp)

def test_ops_frame_period(self):
# GH 13043
df = pd.DataFrame({'A': [pd.Period('2015-01', freq='M'),
pd.Period('2015-02', freq='M')],
'B': [pd.Period('2014-01', freq='M'),
pd.Period('2014-02', freq='M')]})
self.assertEqual(df['A'].dtype, object)
self.assertEqual(df['B'].dtype, object)

p = pd.Period('2015-03', freq='M')
# dtype will be object because of original dtype
exp = pd.DataFrame({'A': np.array([2, 1], dtype=object),
'B': np.array([14, 13], dtype=object)})
tm.assert_frame_equal(p - df, exp)
tm.assert_frame_equal(df - p, -exp)

df2 = pd.DataFrame({'A': [pd.Period('2015-05', freq='M'),
pd.Period('2015-06', freq='M')],
'B': [pd.Period('2015-05', freq='M'),
pd.Period('2015-06', freq='M')]})
self.assertEqual(df2['A'].dtype, object)
self.assertEqual(df2['B'].dtype, object)

exp = pd.DataFrame({'A': np.array([4, 4], dtype=object),
'B': np.array([16, 16], dtype=object)})
tm.assert_frame_equal(df2 - df, exp)
tm.assert_frame_equal(df - df2, -exp)


if __name__ == '__main__':
import nose
Expand Down
32 changes: 32 additions & 0 deletions pandas/tseries/tests/test_timedeltas.py
Original file line number Diff line number Diff line change
Expand Up @@ -413,6 +413,38 @@ def test_ops_series(self):
tm.assert_series_equal(expected, td * other)
tm.assert_series_equal(expected, other * td)

def test_ops_series_object(self):
# GH 13043
s = pd.Series([pd.Timestamp('2015-01-01', tz='US/Eastern'),
pd.Timestamp('2015-01-01', tz='Asia/Tokyo')],
name='xxx')
self.assertEqual(s.dtype, object)

exp = pd.Series([pd.Timestamp('2015-01-02', tz='US/Eastern'),
pd.Timestamp('2015-01-02', tz='Asia/Tokyo')],
name='xxx')
tm.assert_series_equal(s + pd.Timedelta('1 days'), exp)
tm.assert_series_equal(pd.Timedelta('1 days') + s, exp)

# object series & object series
s2 = pd.Series([pd.Timestamp('2015-01-03', tz='US/Eastern'),
pd.Timestamp('2015-01-05', tz='Asia/Tokyo')],
name='xxx')
self.assertEqual(s2.dtype, object)
exp = pd.Series([pd.Timedelta('2 days'), pd.Timedelta('4 days')],
name='xxx')
tm.assert_series_equal(s2 - s, exp)
tm.assert_series_equal(s - s2, -exp)

s = pd.Series([pd.Timedelta('01:00:00'), pd.Timedelta('02:00:00')],
name='xxx', dtype=object)
self.assertEqual(s.dtype, object)

exp = pd.Series([pd.Timedelta('01:30:00'), pd.Timedelta('02:30:00')],
name='xxx')
tm.assert_series_equal(s + pd.Timedelta('00:30:00'), exp)
tm.assert_series_equal(pd.Timedelta('00:30:00') + s, exp)

def test_compare_timedelta_series(self):
# regresssion test for GH5963
s = pd.Series([timedelta(days=1), timedelta(days=2)])
Expand Down