Skip to content

BUG: Bug in tz-conversions with an ambiguous time and .dt accessors, #11295 #11301

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 13, 2015
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions doc/source/whatsnew/v0.17.1.txt
Original file line number Diff line number Diff line change
Expand Up @@ -55,8 +55,12 @@ Bug Fixes

- Bug in ``.to_latex()`` output broken when the index has a name (:issue: `10660`)
- Bug in ``HDFStore.append`` with strings whose encoded length exceded the max unencoded length (:issue:`11234`)

- Bug in ``HDFStore.select`` when comparing with a numpy scalar in a where clause (:issue:`11283`)

- Bug in tz-conversions with an ambiguous time and ``.dt`` accessors (:issues:`11295`)





Expand Down
9 changes: 9 additions & 0 deletions pandas/tests/test_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -3348,6 +3348,15 @@ def test_construction_with_alt(self):
i2 = DatetimeIndex(i.tz_localize(None).asi8, dtype=i.dtype, tz=i.dtype.tz)
self.assert_index_equal(i, i2)

# localize into the provided tz
i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC')
expected = i.tz_localize(None).tz_localize('UTC')
self.assert_index_equal(i2, expected)

i2 = DatetimeIndex(i, tz='UTC')
expected = i.tz_convert('UTC')
self.assert_index_equal(i2, expected)

# incompat tz/dtype
self.assertRaises(ValueError, lambda : DatetimeIndex(i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific'))

Expand Down
12 changes: 12 additions & 0 deletions pandas/tests/test_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,18 @@ def get_dir(s):
results = get_dir(s)
tm.assert_almost_equal(results, list(sorted(set(ok_for_period + ok_for_period_methods))))

# 11295
# ambiguous time error on the conversions
s = Series(pd.date_range('2015-01-01', '2016-01-01', freq='T'))
s = s.dt.tz_localize('UTC').dt.tz_convert('America/Chicago')
results = get_dir(s)
tm.assert_almost_equal(results, list(sorted(set(ok_for_dt + ok_for_dt_methods))))
expected = Series(pd.date_range('2015-01-01',
'2016-01-01',
freq='T',
tz='UTC').tz_convert('America/Chicago'))
tm.assert_series_equal(s, expected)

# no setting allowed
s = Series(date_range('20130101',periods=5,freq='D'))
with tm.assertRaisesRegexp(ValueError, "modifications"):
Expand Down
4 changes: 3 additions & 1 deletion pandas/tseries/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,8 +45,10 @@ def maybe_to_datetimelike(data, copy=False):
raise TypeError("cannot convert an object of type {0} to a datetimelike index".format(type(data)))

index = data.index
if is_datetime64_dtype(data.dtype) or is_datetime64tz_dtype(data.dtype):
if is_datetime64_dtype(data.dtype):
return DatetimeProperties(DatetimeIndex(data, copy=copy, freq='infer'), index, name=data.name)
elif is_datetime64tz_dtype(data.dtype):
return DatetimeProperties(DatetimeIndex(data, copy=copy, freq='infer', ambiguous='infer'), index, name=data.name)
elif is_timedelta64_dtype(data.dtype):
return TimedeltaProperties(TimedeltaIndex(data, copy=copy, freq='infer'), index, name=data.name)
else:
Expand Down
9 changes: 5 additions & 4 deletions pandas/tseries/frequencies.py
Original file line number Diff line number Diff line change
Expand Up @@ -851,10 +851,11 @@ def infer_freq(index, warn=True):
raise TypeError("cannot infer freq from a non-convertible index type {0}".format(type(index)))
index = index.values

try:
index = pd.DatetimeIndex(index)
except AmbiguousTimeError:
index = pd.DatetimeIndex(index.asi8)
if not isinstance(index, pd.DatetimeIndex):
try:
index = pd.DatetimeIndex(index)
except AmbiguousTimeError:
index = pd.DatetimeIndex(index.asi8)

inferer = _FrequencyInferer(index, warn=warn)
return inferer.get_freq()
Expand Down
12 changes: 3 additions & 9 deletions pandas/tseries/index.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,8 @@ def _join_i8_wrapper(joinf, **kwargs):
_datetimelike_ops = ['year','month','day','hour','minute','second',
'weekofyear','week','dayofweek','weekday','dayofyear','quarter', 'days_in_month', 'daysinmonth',
'date','time','microsecond','nanosecond','is_month_start','is_month_end',
'is_quarter_start','is_quarter_end','is_year_start','is_year_end','tz','freq']
'is_quarter_start','is_quarter_end','is_year_start','is_year_end',
'tz','freq']
_is_numeric_dtype = False


Expand Down Expand Up @@ -269,14 +270,7 @@ def __new__(cls, data=None,
dayfirst=dayfirst,
yearfirst=yearfirst)

if is_datetimetz(data):
# extract the data whether a Series or Index
if isinstance(data, ABCSeries):
data = data._values
tz = data.tz
data = data.tz_localize(None, ambiguous='infer').values

if issubclass(data.dtype.type, np.datetime64):
if issubclass(data.dtype.type, np.datetime64) or is_datetimetz(data):
if isinstance(data, ABCSeries):
data = data._values
if isinstance(data, DatetimeIndex):
Expand Down