Skip to content

BUG: DataFrame.to_markdown exception when a cell has numpy.array type #61337

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
2 of 3 tasks
omarsaad98 opened this issue Apr 22, 2025 · 1 comment
Open
2 of 3 tasks
Labels
Bug IO Data IO issues that don't fit into a more specific label Nested Data Data where the values are collections (lists, sets, dicts, objects, etc.).

Comments

@omarsaad98
Copy link

omarsaad98 commented Apr 22, 2025

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np

results = pd.DataFrame({"col1": [np.array(["hello","world"], dtype=object), "world"]})
results.to_markdown()

Issue Description

When a dataframe contains a cell with type numpy.array, the to_markdown function will fail. The exact issue is due to differing behavior between any other value and numpy arrays, but the reason I think this is a pandas issue is because an assumption is made about the value:

def _is_separating_line(row):
    row_type = type(row)
    is_sl = (row_type == list or row_type == str) and (
        (len(row) >= 1 and row[0] == SEPARATING_LINE) # <- compares row[0] to a string
        or (len(row) >= 2 and row[1] == SEPARATING_LINE)
    )
    return is_sl

Anything that isn't a string will normally result in this comparison resolving to False, but this should be explicit to avoid strange datatypes causing undefined behavior.

Stack trace:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[69], line 3
      1 import numpy as np
      2 results = pd.DataFrame({"col1": [np.array(["hello","world"], dtype=object), "world"]})
----> 3 results.to_markdown()

File [...]\.venv\Lib\site-packages\pandas\util\_decorators.py:333, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
    327 if len(args) > num_allow_args:
    328     warnings.warn(
    329         msg.format(arguments=_format_argument_list(allow_args)),
    330         FutureWarning,
    331         stacklevel=find_stack_level(),
    332     )
--> 333 return func(*args, **kwargs)

File [...]\.venv\Lib\site-packages\pandas\core\frame.py:2984, in DataFrame.to_markdown(self, buf, mode, index, storage_options, **kwargs)
   2982 kwargs.setdefault("showindex", index)
   2983 tabulate = import_optional_dependency("tabulate")
-> 2984 result = tabulate.tabulate(self, **kwargs)
   2985 if buf is None:
   2986     return result

File [...]\.venv\Lib\site-packages\tabulate\__init__.py:2048, in tabulate(tabular_data, headers, tablefmt, floatfmt, intfmt, numalign, stralign, missingval, showindex, disable_numparse, colalign, maxcolwidths, rowalign, maxheadercolwidths)
   2045 if tabular_data is None:
   2046     tabular_data = []
-> 2048 list_of_lists, headers = _normalize_tabular_data(
   2049     tabular_data, headers, showindex=showindex
   2050 )
   2051 list_of_lists, separating_lines = _remove_separating_lines(list_of_lists)
   2053 if maxcolwidths is not None:

File [...]\.venv\Lib\site-packages\tabulate\__init__.py:1471, in _normalize_tabular_data(tabular_data, headers, showindex)
   1469 headers = list(map(str, headers))
   1470 #    rows = list(map(list, rows))
-> 1471 rows = list(map(lambda r: r if _is_separating_line(r) else list(r), rows))
   1473 # add or remove an index column
   1474 showindex_is_a_str = type(showindex) in [str, bytes]

File [...]\.venv\Lib\site-packages\tabulate\__init__.py:1471, in _normalize_tabular_data.<locals>.<lambda>(r)
   1469 headers = list(map(str, headers))
   1470 #    rows = list(map(list, rows))
-> 1471 rows = list(map(lambda r: r if _is_separating_line(r) else list(r), rows))
   1473 # add or remove an index column
   1474 showindex_is_a_str = type(showindex) in [str, bytes]

File [...]\.venv\Lib\site-packages\tabulate\__init__.py:107, in _is_separating_line(row)
    104 def _is_separating_line(row):
    105     row_type = type(row)
    106     is_sl = (row_type == list or row_type == str) and (
--> 107         (len(row) >= 1 and row[0] == SEPARATING_LINE)
    108         or (len(row) >= 2 and row[1] == SEPARATING_LINE)
    109     )
    110     return is_sl

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

Expected Behavior

to_markdown converts this numpy array to string and outputting a markdown normally. Instead there's an exception

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.13.1
python-bits : 64
OS : Windows
OS-release : 11
Version : 10.0.26100
machine : AMD64
processor : Intel64 Family 6 Model 140 Stepping 1, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252

pandas : 2.2.3
numpy : 2.2.4
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : None
sphinx : None
IPython : 9.0.2
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : None
matplotlib : 3.10.1
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 19.0.1
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None

@omarsaad98 omarsaad98 added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Apr 22, 2025
@rhshadrach rhshadrach added Nested Data Data where the values are collections (lists, sets, dicts, objects, etc.). Needs Discussion Requires discussion from core team before further action and removed Needs Triage Issue that has not been reviewed by a pandas team member Needs Discussion Requires discussion from core team before further action labels Apr 22, 2025
@rhshadrach
Copy link
Member

Thanks for the report, confirmed on main. In general I think you will find little support in pandas for nested objects, and I do not think pandas should necessarily support such things in all operations. But if the fix here is simple, I'm positive on it. Further investigations and (simple 😄) PRs to fix are welcome!

@rhshadrach rhshadrach added the IO Data IO issues that don't fit into a more specific label label Apr 22, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug IO Data IO issues that don't fit into a more specific label Nested Data Data where the values are collections (lists, sets, dicts, objects, etc.).
Projects
None yet
Development

No branches or pull requests

2 participants