Skip to content

BUG: inconsistency in freq of DatetimeIndex when converting PeriodIndex.to_timestamp #56213

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
3 tasks done
natmokval opened this issue Nov 27, 2023 · 3 comments
Open
3 tasks done
Labels

Comments

@natmokval
Copy link
Contributor

natmokval commented Nov 27, 2023

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
per = pd.PeriodIndex(['2012-01', '2012-04', '2012-07'], dtype='period[Q]') 
per.to_timestamp(how='start')

per = pd.PeriodIndex(['2012-01', '2012-04'], dtype='period[Q]') 
per.to_timestamp(how='start')

per = pd.PeriodIndex(['2012-01', '2012-02', '2012-03'], dtype='period[M]') 
per.to_timestamp(how='start')

per = pd.PeriodIndex(['2012-01', '2012-02'], dtype='period[M]') 
per.to_timestamp(how='start')

Issue Description

this outputs

per = pd.PeriodIndex(['2012-01', '2012-04', '2012-07'], dtype='period[Q]')
per.to_timestamp(how='start')
DatetimeIndex(['2012-01-01', '2012-04-01', '2012-07-01'], dtype='datetime64[ns]', freq='QS-OCT')

per = pd.PeriodIndex(['2012-01', '2012-04'], dtype='period[Q]')
per.to_timestamp(how='start')
DatetimeIndex(['2012-01-01', '2012-04-01'], dtype='datetime64[ns]', freq=None)

per = pd.PeriodIndex(['2012-01', '2012-02', '2012-03'], dtype='period[M]')
per.to_timestamp(how='start')
DatetimeIndex(['2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS')

per = pd.PeriodIndex(['2012-01', '2012-02'], dtype='period[M]')
per.to_timestamp(how='start')
DatetimeIndex(['2012-01-01', '2012-02-01'], dtype='datetime64[ns]', freq=None)

Expected Behavior

during conversion PeriodIndex.to_timestamp freq in DatetimeIndex unexpectedly depends on len of data. Shouldn't freqs in all examples above be equal 'QS-OCT' and 'MS', but not None?

per = pd.PeriodIndex(['2012-01', '2012-04'], dtype='period[Q]')
per.to_timestamp(how='start')
DatetimeIndex(['2012-01-01', '2012-04-01'], dtype='datetime64[ns]', freq='QS-OCT')

per = pd.PeriodIndex(['2012-01', '2012-02'], dtype='period[M]')
per.to_timestamp(how='start')
DatetimeIndex(['2012-01-01', '2012-02-01'], dtype='datetime64[ns]', freq='MS')

Installed Versions

INSTALLED VERSIONS

commit : b7a2207
python : 3.10.13.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.0-22-amd64
Version : #1 SMP Debian 4.19.260-1 (2022-09-29)
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8

pandas : 2.1.0.dev0+1330.gb7a220731e.dirty
numpy : 1.26.0
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.1.2
pip : 23.3.1
Cython : 3.0.5
pytest : 7.4.3
hypothesis : 6.89.0
sphinx : 7.2.6
blosc : None
feather : None
xlsxwriter : 3.1.9
lxml.etree : 4.9.3
html5lib : 1.1
pymysql : 1.4.6
psycopg2 : 2.9.7
jinja2 : 3.1.2
IPython : 8.17.2
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.2
bottleneck : 1.3.7
dataframe-api-compat : None
fastparquet : 2023.10.1
fsspec : 2023.10.0
gcsfs : 2023.10.0
matplotlib : 3.8.1
numba : 0.58.1
numexpr : 2.8.7
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 14.0.1
pyreadstat : 1.2.4
python-calamine : None
pyxlsb : 1.0.10
s3fs : 2023.10.0
scipy : 1.11.3
sqlalchemy : 2.0.23
tables : 3.9.1
tabulate : 0.9.0
xarray : 2023.11.0
xlrd : 2.0.1
zstandard : 0.22.0
tzdata : 2023.3
qtpy : None
pyqt5 : None

@natmokval natmokval added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Nov 27, 2023
@jbrockmendel
Copy link
Member

during conversion PeriodIndex.to_timestamp freq in DatetimeIndex unexpectedly depends on len of data. Shouldn't freqs in all examples above be equal 'QS-OCT' and 'MS', but not None?

freq unfortunately means something different for PeriodIndex than it does for DatetimeIndex, so we cannot infer the result freq directly from the PeriodIndex's dtype, xref #47227

@natmokval
Copy link
Contributor Author

freq unfortunately means something different for PeriodIndex than it does for DatetimeIndex, so we cannot infer the result freq directly from the PeriodIndex's dtype, xref #47227

thanks for the comment. Seems like when we apply to_timestamp freq in DatetimeIndex changes if we change len of data in PeriodIndex, e.g.

data = ['2012-01', '2012-02', '2012-03']
per = pd.PeriodIndex(data=data, dtype='period[M]')
dti = per.to_timestamp(how='start')
print(dti.freq) # <MonthBegin>


data = ['2012-01', '2012-02']
per = pd.PeriodIndex(data, dtype='period[M]')
dti = per.to_timestamp(how='start')
print(dti.freq) # None

if len(data) < 3, then freq = None, otherwise freq != None
The same for dtype='period[Q]', dtype='period[Y]'
Is it the correct behaviour?

@jbrockmendel
Copy link
Member

id guess this is tied to infer_freq only working with length>=3. im on record as thinknig #47227 is the best way to deal with this, but im open to other ideas

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants