You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In the above example, I would expect that the CSV data is loaded onto a DataFrame with PyArrow-backed types. This behavior works when the type is a string, int or float. However, it produces an error when bool[arrow] is specified.
Installed Versions
INSTALLED VERSIONS
commit : 37ea63d
python : 3.9.13.final.0
python-bits : 64
OS : Darwin
OS-release : 22.4.0
Version : Darwin Kernel Version 22.4.0: Mon Mar 6 21:00:41 PST 2023; root:xnu-8796.101.5~3/RELEASE_ARM64_T8103
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
Expected Behavior
In the above example, I would expect that the CSV data is loaded onto a DataFrame with PyArrow-backed types. This behavior works when the type is a string, int or float. However, it produces an error when
bool[arrow]
is specified.Installed Versions
INSTALLED VERSIONS
commit : 37ea63d
python : 3.9.13.final.0
python-bits : 64
OS : Darwin
OS-release : 22.4.0
Version : Darwin Kernel Version 22.4.0: Mon Mar 6 21:00:41 PST 2023; root:xnu-8796.101.5~3/RELEASE_ARM64_T8103
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.0.1
numpy : 1.24.2
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.6.1
pip : 23.1.2
Cython : None
pytest : 7.3.1
hypothesis : None
sphinx : 6.1.3
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.2
html5lib : 1.1
pymysql : 1.0.3
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.12.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2023.4.0
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 12.0.0
pyreadstat : None
pyxlsb : None
s3fs : 0.4.2
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: