Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame(dict(a=[1,2,3],
b=[1,2,3]))
df.replace({1:5}, value=None) # does not replace values at all
df.replace({1:5}) # correctly replaces 1s with 5s
Issue Description
The documentation for DataFrame.replace says, for the to_replace
argument, that:
Dicts can be used to specify different replacement values for different existing values. For example, {'a': 'b', 'y': 'z'} replaces the value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way the value parameter should be None.
However, specifying value=None
results in no replacement taking place. If I don't specify value
at all, it works.
Expected Behavior
I expect (based on the docs) that specifying value=None
will allow using a dictionary for replacement.
Installed Versions
INSTALLED VERSIONS
commit : 06d2301
python : 3.8.13.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.93-87.444.amzn2.x86_64
Version : #1 SMP Thu Jan 20 22:50:50 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.1
numpy : 1.22.3
pytz : 2022.1
dateutil : 2.8.2
pip : 21.2.4
setuptools : 58.0.4
Cython : None
pytest : 7.1.1
hypothesis : None
sphinx : 4.5.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.1
IPython : 8.1.1
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : 0.8.1
fsspec : 2022.3.0
gcsfs : None
matplotlib : 3.5.1
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 3.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.8.0
sqlalchemy : None
tables : None
tabulate : 0.8.9
xarray : None
xlrd : None
xlwt : None
zstandard : None