You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When computing the union of 2 daily DatetimeIndex one of which is across a summer/winter time change, the result is not correct.
The wrong union currently omits or adds dates to the result.
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
result:
When computing the union of 2 daily DatetimeIndex one of which is across a summer/winter time change, the result is not correct.
The wrong union currently omits or adds dates to the result.
Expected Behavior
expected result:
The correct result can be obtained by removing first the freq on one of the index with:
Installed Versions
INSTALLED VERSIONS
commit : bb1f651
python : 3.8.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.25-linuxkit
Version : #1 SMP Tue Mar 23 09:27:39 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.0
numpy : 1.22.1
pytz : 2021.3
dateutil : 2.8.2
pip : 21.0.1
setuptools : 49.6.0.post20210108
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.7.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 7.20.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
fsspec : 2022.01.0
gcsfs : None
matplotlib : 3.4.2
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 6.0.1
pyreadstat : None
pyxlsb : None
s3fs : 2022.01.0
scipy : 1.7.3
sqlalchemy : 1.3.23
tables : None
tabulate : None
xarray : 0.18.2
xlrd : None
xlwt : None
zstandard : None
The text was updated successfully, but these errors were encountered: