Closed
Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import numpy as np
import math
import pandas as pd
id1 = pd.date_range('2019-10-01', '2020-01-08', freq='2H').to_frame(name='stamp').reset_index(drop=True)
id2 = pd.date_range('2019-10-01', '2020-01-08').to_frame(name='stamp').reset_index(drop=True)
id1['id'] = 1
a = 2.5
id1['value'] = (math.e + a) ** (((id1.index + 10) % 40) - 20)
id2['id'] = 2
id2['value'] = np.nan
id2.loc[id2.stamp == '2019-11-15', 'value'] = 10. ** -13
df = pd.concat([id1, id2], ignore_index=True)
df.sort_values('stamp', inplace=True)
roll_sum = df.groupby('id').rolling('93D', on='stamp')['value'].sum().reset_index()
print(roll_sum[roll_sum.id == 2].iloc[-1].value)
roll_sum_2 = df[df.id == 2].groupby('id').rolling('93D', on='stamp')['value'].sum().reset_index()
print(roll_sum_2[roll_sum_2.id == 2].iloc[-1].value)
Problem description
In the code above i show that last values in rollings are not equal:
- if i count a sum of
value
using rolling on full dataframe, i obtain0.015625000000100003
- If i filter a dataframe and keep only
id=2
, i obtain1e-13
.
It seems that the aggregation in the second group depends on the first group.
If i replace a
on 0
, i will get 2.980242e-08
in a first rolling. And if i replace a
on 1
, i will get a correct answer 1e-13
Expected Output
1e-13
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit : 3e89b4c4b1580aa890023fc550774e63d499da25
python : 3.7.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.3.13-300.fc31.x86_64
Version : #1 SMP Mon Nov 25 17:25:25 UTC 2019
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.0
numpy : 1.17.4
pytz : 2019.2
dateutil : 2.8.0
pip : 19.1.1
setuptools : 50.3.0
Cython : None
pytest : 5.4.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.5.0
html5lib : None
pymysql : None
psycopg2 : 2.8.4 (dt dec pq3 ext lo64)
jinja2 : 2.10.1
IPython : None
pandas_datareader: None
bs4 : 4.9.0
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.2.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : 1.3.11
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None