-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
BUG: min/max of empty datetime dataframe raises #33704
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
Note the difference here: In [1]: import pandas as pd
# initialize a series from pd.to_datetime
In [2]: srs = pd.Series(pd.to_datetime([]))
In [3]: srs
Out[3]: Series([], dtype: datetime64[ns])
In [4]: srs.max()
Out[4]: NaT
In [5]: df1 = pd.DataFrame(dict(x=pd.to_datetime([])))
In [6]: df1
Out[6]:
Empty DataFrame
Columns: [x]
Index: []
...
In [8]: df1.max()
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-8-ffa8d8284b6e> in <module>
----> 1 df1.max()
~/programming/python/pandas_tests/pandas/pandas/core/generic.py in stat_func(self, axis, skipna, level, numeric_only, **kwargs)
11172 return self._agg_by_level(name, axis=axis, level=level, skipna=skipna)
11173 #import pdb; pdb.set_trace()()
> 11174 return self._reduce(
11175 func, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only
11176 )
~/programming/python/pandas_tests/pandas/pandas/core/frame.py in _reduce(self, op, name, axis, skipna, numeric_only, filter_type, **kwds)
8377
8378 try:
-> 8379 result = f(values)
8380
8381 except TypeError:
~/programming/python/pandas_tests/pandas/pandas/core/frame.py in f(x)
8296
8297 def f(x):
-> 8298 return op(x, axis=axis, skipna=skipna, **kwds)
8299
8300 def _get_data(axis_matters):
~/programming/python/pandas_tests/pandas/pandas/core/nanops.py in f(values, axis, skipna, **kwds)
111 # correctly handle empty inputs and remove this check.
112 # It *may* just be `var`
--> 113 return _na_for_min_count(values, axis)
114
115 if _USE_BOTTLENECK and skipna and _bn_ok_dtype(values.dtype, bn_name):
~/programming/python/pandas_tests/pandas/pandas/core/nanops.py in _na_for_min_count(values, axis)
386 result_shape = values.shape[:axis] + values.shape[axis + 1 :]
387 result = np.empty(result_shape, dtype=values.dtype)
--> 388 result.fill(fill_value)
389 return result
390
ValueError: cannot convert float NaN to integer
# initializing dataframe with an empty list of pandas datetimes
In [9]: df2 = pd.DataFrame([pd.to_datetime([])])
In [10]: df2
Out[10]:
Empty DataFrame
Columns: []
Index: [0]
In [11]: df2.max()
Out[11]: Series([], dtype: float64)
# when only column x is taken
In [13]: df1.x.max()
Out[13]: NaT This totally seems unexpected, especially |
CloseChoice
added a commit
to CloseChoice/pandas
that referenced
this issue
May 1, 2020
5 tasks
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
Problem description
When taking the min/max of an empty datetime dataframe, a ValueError is raised. This is surprising, and inconsistent with the case of an empty datetime series, where min/max return NaT.
Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.7.final.0
python-bits : 64
OS : Linux
OS-release : 4.20.11-100.fc28.x86_64
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.0.3
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.1.3.post20200330
Cython : 0.29.15
pytest : 5.4.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.5.0
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.13.0
pandas_datareader: None
bs4 : 4.9.0
bottleneck : 1.3.2
fastparquet : None
gcsfs : None
lxml.etree : 4.5.0
matplotlib : 3.1.3
numexpr : 2.7.1
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 0.15.1
pytables : None
pytest : 5.4.1
pyxlsb : None
s3fs : None
scipy : 1.2.1
sqlalchemy : 1.3.16
tables : 3.6.1
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
The text was updated successfully, but these errors were encountered: