Skip to content

Unexpected behaviour of Series.rolling.corr when using a Timedelta based window. #31286

Closed
@trendelkampschroer

Description

@trendelkampschroer

Code Sample, a copy-pastable example if possible

import numpy as np
import pandas as pd

def f(x, y, window):
    return x.rolling(window).corr(y)

def g(x, y, window):
    return x.rolling(window).apply(lambda x: x.corr(y), raw=False)


if __name__ == "__main__":
    N = 20
    n = 10
    
    x = pd.Series(np.random.randn(N))
    y = 1.0 * x
    x[0:n] = 0.
    window = 4

    print(f(x, y, window)[n + window - 1 :])
>>> 13    1.0
14    1.0
15    1.0
16    1.0
17    1.0
18    1.0
19    1.0
dtype: float64

    print(g(x, y, window)[n + window - 1 :])
>>> 13    1.0
14    1.0
15    1.0
16    1.0
17    1.0
18    1.0
19    1.0  

    index = pd.date_range("2001-01-01", freq="D", periods=N)
    x = pd.Series(np.random.randn(N), index=index)
    y = 2.0 * x
    x[0:n] = 0.

    print(f(x, y, window)[n + window - 1 :])
>>> 2001-01-14    1.0
2001-01-15    1.0
2001-01-16    1.0
2001-01-17    1.0
2001-01-18    1.0
2001-01-19    1.0
2001-01-20    1.0
Freq: D, dtype: float64

    print(g(x, y, window)[n + window - 1 :])
>>> 2001-01-14    1.0
2001-01-15    1.0
2001-01-16    1.0
2001-01-17    1.0
2001-01-18    1.0
2001-01-19    1.0
2001-01-20    1.0
Freq: D, dtype: float64

    dt_window = pd.to_timedelta("4D")
    print(f(x, y, dt_window)[n + window - 1 :])
>>> 2001-01-14    0.354308
2001-01-15    0.373106
2001-01-16    0.372752
2001-01-17    0.380531
2001-01-18    0.380298
2001-01-19    0.386142
2001-01-20    0.410147
Freq: D, dtype: float64

    print(g(x, y, dt_window)[n + window - 1 :])
>>> 2001-01-14    1.0
2001-01-15    1.0
2001-01-16    1.0
2001-01-17    1.0
2001-01-18    1.0
2001-01-19    1.0
2001-01-20    1.0
Freq: D, dtype: float64

Problem description

Both functions f and g should return the same value for entries 13 - 19 in the resulting series.

Currently the result of f when window = Timedelta(days=4) is not the correlation between the values of x and y which should be equal to 1.0 for entries 13 - 19 in the result.

Computed values on a DataFrame are also affected, i.e.

df = pd.DataFrame({"x": x, "y": y})
df.rolling(dt_window).corr()

does also compute unexpected values for the crosscorrelation.

If .corr is replaced with .cov in f and g both functions return identical results, so it is likely that it is caused by a difference in the normalisation in the correlation computation that is applied when using f and when using g.

Expected Output

Output of pd.show_versions()

pd.show_versions()

INSTALLED VERSIONS

commit : None

pandas : 0.25.3
numpy : 1.15.4
pytz : 2019.3
dateutil : 2.8.1
pip : 19.3.1
setuptools : 41.6.0.post20191030
Cython : 0.29.6
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.3
IPython : 7.9.0
pandas_datareader: None
bs4 : 4.8.1
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 2.2.3
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.1.0
sqlalchemy : None
tables : None
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugWindowrolling, ewma, expanding

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions