Description
Code Sample, a copy-pastable example if possible
import pandas as pd
a = pd.Timestamp("2019-2-2").date()
i = pd.MultiIndex.from_product([
[a, a],
[2, 3]
])
print("a={} ({}".format(a, type(a)))
print(i[0])
Output is :
a=2019-02-02 (<class 'datetime.date'>
(Timestamp('2019-02-02 00:00:00'), 2)
Problem description
When using from_product with python datetimes, the resulting MultiIndex level is converted to pandas datetimes (Timestamps). There is no way to keep the original python datetime which I want. I got the same behavior with from_tuples. But it was not the case with from_arrays.
Expected Output
I expect the output to respect the type I gave to from_product :
a=2019-02-02 (<class 'datetime.date'>
(datetime.date(2019, 2, 2), 2)
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 9, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 0.25.1
numpy : 1.17.0
pytz : 2019.2
dateutil : 2.8.0
pip : 19.0.3
setuptools : 40.8.0
Cython : None
pytest : 4.6.5
hypothesis : None
sphinx : 2.2.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.4.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.7.0
pandas_datareader: None
bs4 : 4.8.0
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : 4.4.1
matplotlib : 3.1.1
numexpr : None
odfpy : None
openpyxl : 2.6.3
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.1
sqlalchemy : None
tables : None
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None