-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
MultiIndex.from_product converts datetime.date to pd.Timestamp #28152
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
One workaround I found is to pass Index to from_product instead of lists : import pandas as pd
a = pd.Timestamp("2019-2-2").date()
i = pd.MultiIndex.from_product([
pd.Index([a, a]),
[2, 3]
])
print("a={} ({}".format(a, type(a)))
print(i[0]) Output :
|
You don't specify a dtype, right? So this is a bug in inference. I would expect the MultiIndex constructors to follow the behavior of Index (and Series), which preserve the datetime. In [24]: pd.Index([a, a])
Out[24]: Index([2019-02-02, 2019-02-02], dtype='object')
In [25]: pd.Index([a, a])[0]
Out[25]: datetime.date(2019, 2, 2) |
Hmm the bug seems to be in In [31]: pd.Categorical([a]).categories
Out[31]: DatetimeIndex(['2019-02-02'], dtype='datetime64[ns]', freq=None) |
Just noting the distinction that this is an issue with |
I got tripped up on this as well when using One suggestion: maybe add documentation/warning on the preferred way to round timestamps to date? This is a common operation and (See also #15906) In [4]: df = pd.DataFrame({'date' : pd.date_range(start='2020-01-01', periods=10), 'label' : 1})
In [5]: df['date'] = df['date'].dt.date
In [6]: display(df.date[0])
datetime.date(2020, 1, 1)
In [7]: df_1 = df.set_index('date').reset_index()
In [8]: display(df_1.date[0])
datetime.date(2020, 1, 1)
In [9]: df_1 = df.set_index(['date', 'label']).reset_index()
In [10]: display(df_1.date[0])
Timestamp('2020-01-01 00:00:00') |
Code Sample, a copy-pastable example if possible
Output is :
Problem description
When using from_product with python datetimes, the resulting MultiIndex level is converted to pandas datetimes (Timestamps). There is no way to keep the original python datetime which I want. I got the same behavior with from_tuples. But it was not the case with from_arrays.
Expected Output
I expect the output to respect the type I gave to from_product :
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 9, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 0.25.1
numpy : 1.17.0
pytz : 2019.2
dateutil : 2.8.0
pip : 19.0.3
setuptools : 40.8.0
Cython : None
pytest : 4.6.5
hypothesis : None
sphinx : 2.2.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.4.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.7.0
pandas_datareader: None
bs4 : 4.8.0
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : 4.4.1
matplotlib : 3.1.1
numexpr : None
odfpy : None
openpyxl : 2.6.3
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.1
sqlalchemy : None
tables : None
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None
The text was updated successfully, but these errors were encountered: