Skip to content

fillna using columns of dtype category also fills non-NaN values #26215

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
lcvriend opened this issue Apr 26, 2019 · 5 comments · Fixed by #27932
Closed

fillna using columns of dtype category also fills non-NaN values #26215

lcvriend opened this issue Apr 26, 2019 · 5 comments · Fixed by #27932
Labels
Bug Categorical Categorical Data Type Missing-data np.nan, pd.NaT, pd.NA, dropna, isnull, interpolate

Comments

@lcvriend
Copy link

Code Sample, a copy-pastable example if possible

import pandas as pd
import numpy as np

dct = {
    'A': ['a', 'b', 'c', 'b'], 
    'B': ['d', 'e', np.nan, np.nan]
}
df = pd.DataFrame.from_dict(dct).astype('category')
df['C'] = df['B']
df['C'].cat.add_categories(df['A'].cat.categories, inplace=True)
df['C'] = df['C'].fillna(df['A'])

output

  A B C
0 a d a
1 b e b
2 c NaN c
3 b NaN b

Problem description

I have two columns, A and B, of dtype category. Column B contains NaN values.
Applying fillna to B using A (after adding categories in A to categories in B), results in ALL values of B being overwritten with values of A. The issue is that fillna also fills non-NaN values.

Expected Output

Non-NaN values should not be overwritten:

  A B C
0 a d d
1 b e e
2 c NaN c
3 b NaN b

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.7.3.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.24.2
pytest: 4.3.1
pip: 19.0.3
setuptools: 40.8.0
Cython: 0.29.6
numpy: 1.16.2
scipy: 1.2.1
pyarrow: None
xarray: None
IPython: 7.4.0
sphinx: 1.8.5
patsy: 0.5.1
dateutil: 2.8.0
pytz: 2018.9
blosc: None
bottleneck: 1.2.1
tables: 3.5.1
numexpr: 2.6.9
feather: None
matplotlib: 3.0.3
openpyxl: 2.6.1
xlrd: 1.2.0
xlwt: 1.3.0
xlsxwriter: 1.1.5
lxml.etree: 4.3.2
bs4: 4.7.1
html5lib: 1.0.1
sqlalchemy: 1.3.1
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None

@WillAyd
Copy link
Member

WillAyd commented Apr 26, 2019

Makes sense - investigation and PRs would certainly be welcome

@WillAyd WillAyd added Bug Categorical Categorical Data Type Missing-data np.nan, pd.NaT, pd.NA, dropna, isnull, interpolate labels Apr 26, 2019
@arpit1997
Copy link

@WillAyd Can I try this?

@gamis
Copy link

gamis commented Aug 9, 2019

Confirmed this happening for me too.

@TomAugspurger
Copy link
Contributor

Slightly simpler example

In [36]: s = pd.Series(pd.Categorical(['d', 'e', None, None], categories=['d', 'e', 'a', 'b', 'c']))

In [37]: s.fillna(pd.Series(['a', 'b', 'c', 'd']))
Out[37]:
0    a
1    b
2    c
3    d
dtype: category
Categories (5, object): [d, e, a, b, c]

@gamis I don't think anyone has opened a PR for this, if you're interested in working on it. Even diagnosing the issue would be valuable.

@TomAugspurger TomAugspurger added this to the Contributions Welcome milestone Aug 12, 2019
@MarcoGorelli
Copy link
Member

Even simpler :)

>>> import pandas as pd
>>> pd.Categorical(['d', 'e', None, None], categories=['d', 'e', 'a', 'b', 'c']).fillna(pd.Series(['a', 'b', 'c', 'd']))
[a, b, c, d]
Categories (5, object): [d, e, a, b, c]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Categorical Categorical Data Type Missing-data np.nan, pd.NaT, pd.NA, dropna, isnull, interpolate
Projects
None yet
Development

Successfully merging a pull request may close this issue.

6 participants